Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 19 (2023), 099, 10 pages      arXiv:2307.15222      https://doi.org/10.3842/SIGMA.2023.099

Newton's Off-Center Circular Orbits and the Magnetic Monopole

Dipesh Bhandari a and Michael Crescimanno b
a) Department of Physics and Astronomy, Texas A&M University-Commerce, TX, 75429, USA
b) Department of Physics and Astronomy, Youngstown State University, Youngstown, OH, 44555, USA

Received July 31, 2023; in final form December 08, 2023; Published online December 17, 2023

Abstract
Introducing a radially dependent magnetic field into Newton's off-center circular orbits potential so as to preserve the $E=0$ dynamical symmetry leads to a unique choice of field that can be identified as the inclusion of a magnetic monopole in the inverse stereographically projected problem. One finds also a phenomenological correspondence with that of the linearly damped Kepler model. The presence of the monopole field deforms the symmetry algebra by a central extension, and the quantum mechanical version of this algebra reveals a number of zero modes equal to that counted using the index theorem of elliptic operators.

Key words: integrals of motion; magnetic monopole; zero modes.

pdf (473 kb)   tex (160 kb)  

References

  1. Andrade e Silva R., Jacobson T., Particle on the sphere: group-theoretic quantization in the presence of a magnetic monopole, J. Phys. A 54 (2021), 235303, 33 pages, arXiv:2011.04888.
  2. Atiyah M.F., Bott R., Patodi V.K., On the heat equation and the index theorem, Invent. Math. 19 (1973), 279-330.
  3. Atiyah M.F., Singer I.M., The index of elliptic operators on compact manifolds, Bull. Amer. Math. Soc. 69 (1963), 422-433.
  4. Bardakci K., Crescimanno M., Monopole backgrounds on the world sheet, Nuclear Phys. B 313 (1989), 269-292.
  5. Cooper L.N., Bound electron pairs in a degenerate Fermi gas, Phys. Rev. 104 (1956), 1189-1190.
  6. Dirac P., Quantised singularities in the electromagnetic field, Proc. Roy. Soc. Lond. A 133 (1931), 60-72.
  7. Faure R., Transformations conformes en mécanique ondulatoire, C. R. Acad. Sci. Paris 237 (1953), 603-605.
  8. Gauss C.F., General investigations of curved surfaces of 1827 and 1825, Nature 66 (1902), 316-317.
  9. Golo V., Dynamic ${\rm SO}(3,1)$ symmetry of the Dirac magnetic monopol, JETP Lett. 35 (1982), 663-665.
  10. Grossman B., A $3$-cocyle in quantum mechanics, Phys. Lett. B 152 (1985), 93-97.
  11. Haldane F.D.M., Rezayi E.H., Spin-singlet wave function for the half-integral quantum Hall effect, Phys. Rev. Lett. 60 (1988), 1886-1886.
  12. Hamilton B., Crescimanno M., Linear frictional forces cause orbits to neither circularize nor precess, J. Phys. A 41 (2008), 235205, 13 pages, arXiv:0708.3827.
  13. Hamilton W.R., The Hodograph or a new method of expressing in symbolic language the Newtonian law of attraction, Proc. R. Ir. Acad. 3 (1847), 344-353.
  14. Ince E.L., Ordinary differential equations, Dover Publications, New York, 1956.
  15. Kemp G.M., Veselov A.P., On geometric quantization of the Dirac magnetic monopole, J. Nonlinear Math. Phys. 21 (2014), 34-42, arXiv:1103.6242.
  16. Laughlin R.B., Quantized Hall conductivity in two dimensions, Phys. Rev. B. 23 (1981), 5632-5633.
  17. Lie S., Vorlesung über Differentialgleichungen mit bekannten infinitesimalen Transformationen, B.G. Teubner Verlag, 1891.
  18. Maxwell J.C., Matter and motion, Cambridge Library Collect. Phys. Sci., Cambridge University Pres, 2010.
  19. McIntosh H.V., Cisneros A., Degeneracy in the presence of a magnetic monopole, J. Math. Phys. 11 (1970), 896-916.
  20. McSween E., Winternitz P., Integrable and superintegrable Hamiltonian systems in magnetic fields, J. Math. Phys. 41 (2000), 2957-2967.
  21. Newton I., Newton's Principia. The mathematical principles of natural philosophy, Cambridge Library Collect. Phys. Sci., New-York, D. Adee, 1848.
  22. Olshanii M., A novel potential featuring off-center circular orbits, SIGMA 19 (2023), 001, 8 pages, arXiv:2207.09606.
  23. Senthil T., Levin M., Integer quantum Hall effect for bosons, Phys. Rev. Lett. 110 (2013), 046801, 5 pages.
  24. Shnir Y.M., Magnetic monopoles, Texts Monogr. Phys., Springer, Berlin, 2005.
  25. Singer I.M., Future extensions of index theory and elliptic operators, in Prospects in Mathematics, Ann. of Math. Stud., Vol. 70, Princeton University Press, Princeton, NJ, 1971, 171-185.
  26. Song H., Jo S.G., Quantum mechanics on $S^1$, $S^2$ and Lorentz group, J. Korean Phys. Soc. 59 (2011), 3314-3320.
  27. Suzuki M.S., Suzuki I.S., Laplace-Runge-Lenz triangles in Feynman hodograph diagram: the Kepler's model and Sommerfeld's model, Binghamton, New York, 2022.

Previous article  Next article  Contents of Volume 19 (2023)