|
SIGMA 19 (2023), 099, 10 pages arXiv:2307.15222
https://doi.org/10.3842/SIGMA.2023.099
Newton's Off-Center Circular Orbits and the Magnetic Monopole
Dipesh Bhandari a and Michael Crescimanno b
a) Department of Physics and Astronomy, Texas A&M University-Commerce, TX, 75429, USA
b) Department of Physics and Astronomy, Youngstown State University, Youngstown, OH, 44555, USA
Received July 31, 2023; in final form December 08, 2023; Published online December 17, 2023
Abstract
Introducing a radially dependent magnetic field into Newton's off-center circular orbits potential so as to preserve the $E=0$ dynamical symmetry leads to a unique choice of field that can be identified as the inclusion of a magnetic monopole in the inverse stereographically projected problem. One finds also a phenomenological correspondence with that of the linearly damped Kepler model. The presence of the monopole field deforms the symmetry algebra by a central extension, and the quantum mechanical version of this algebra reveals a number of zero modes equal to that counted using the index theorem of elliptic operators.
Key words: integrals of motion; magnetic monopole; zero modes.
pdf (473 kb)
tex (160 kb)
References
- Andrade e Silva R., Jacobson T., Particle on the sphere: group-theoretic quantization in the presence of a magnetic monopole, J. Phys. A 54 (2021), 235303, 33 pages, arXiv:2011.04888.
- Atiyah M.F., Bott R., Patodi V.K., On the heat equation and the index theorem, Invent. Math. 19 (1973), 279-330.
- Atiyah M.F., Singer I.M., The index of elliptic operators on compact manifolds, Bull. Amer. Math. Soc. 69 (1963), 422-433.
- Bardakci K., Crescimanno M., Monopole backgrounds on the world sheet, Nuclear Phys. B 313 (1989), 269-292.
- Cooper L.N., Bound electron pairs in a degenerate Fermi gas, Phys. Rev. 104 (1956), 1189-1190.
- Dirac P., Quantised singularities in the electromagnetic field, Proc. Roy. Soc. Lond. A 133 (1931), 60-72.
- Faure R., Transformations conformes en mécanique ondulatoire, C. R. Acad. Sci. Paris 237 (1953), 603-605.
- Gauss C.F., General investigations of curved surfaces of 1827 and 1825, Nature 66 (1902), 316-317.
- Golo V., Dynamic ${\rm SO}(3,1)$ symmetry of the Dirac magnetic monopol, JETP Lett. 35 (1982), 663-665.
- Grossman B., A $3$-cocyle in quantum mechanics, Phys. Lett. B 152 (1985), 93-97.
- Haldane F.D.M., Rezayi E.H., Spin-singlet wave function for the half-integral quantum Hall effect, Phys. Rev. Lett. 60 (1988), 1886-1886.
- Hamilton B., Crescimanno M., Linear frictional forces cause orbits to neither circularize nor precess, J. Phys. A 41 (2008), 235205, 13 pages, arXiv:0708.3827.
- Hamilton W.R., The Hodograph or a new method of expressing in symbolic language the Newtonian law of attraction, Proc. R. Ir. Acad. 3 (1847), 344-353.
- Ince E.L., Ordinary differential equations, Dover Publications, New York, 1956.
- Kemp G.M., Veselov A.P., On geometric quantization of the Dirac magnetic monopole, J. Nonlinear Math. Phys. 21 (2014), 34-42, arXiv:1103.6242.
- Laughlin R.B., Quantized Hall conductivity in two dimensions, Phys. Rev. B. 23 (1981), 5632-5633.
- Lie S., Vorlesung über Differentialgleichungen mit bekannten infinitesimalen Transformationen, B.G. Teubner Verlag, 1891.
- Maxwell J.C., Matter and motion, Cambridge Library Collect. Phys. Sci., Cambridge University Pres, 2010.
- McIntosh H.V., Cisneros A., Degeneracy in the presence of a magnetic monopole, J. Math. Phys. 11 (1970), 896-916.
- McSween E., Winternitz P., Integrable and superintegrable Hamiltonian systems in magnetic fields, J. Math. Phys. 41 (2000), 2957-2967.
- Newton I., Newton's Principia. The mathematical principles of natural philosophy, Cambridge Library Collect. Phys. Sci., New-York, D. Adee, 1848.
- Olshanii M., A novel potential featuring off-center circular orbits, SIGMA 19 (2023), 001, 8 pages, arXiv:2207.09606.
- Senthil T., Levin M., Integer quantum Hall effect for bosons, Phys. Rev. Lett. 110 (2013), 046801, 5 pages.
- Shnir Y.M., Magnetic monopoles, Texts Monogr. Phys., Springer, Berlin, 2005.
- Singer I.M., Future extensions of index theory and elliptic operators, in Prospects in Mathematics, Ann. of Math. Stud., Vol. 70, Princeton University Press, Princeton, NJ, 1971, 171-185.
- Song H., Jo S.G., Quantum mechanics on $S^1$, $S^2$ and Lorentz group, J. Korean Phys. Soc. 59 (2011), 3314-3320.
- Suzuki M.S., Suzuki I.S., Laplace-Runge-Lenz triangles in Feynman hodograph diagram: the Kepler's model and Sommerfeld's model, Binghamton, New York, 2022.
|
|