|
SIGMA 19 (2023), 098, 54 pages arXiv:2105.13359
https://doi.org/10.3842/SIGMA.2023.098
Contribution to the Special Issue on Evolution Equations, Exactly Solvable Models and Random Matrices in honor of Alexander Its' 70th birthday
Exact Correlations in Topological Quantum Chains
Nick G. Jones ab and Ruben Verresen cd
a) St John's College, University of Oxford, UK
b) Mathematical Institute, University of Oxford, UK
c) Department of Physics, Harvard University, Cambridge, MA 02138, USA
d) Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
Received March 06, 2023, in final form November 27, 2023; Published online December 15, 2023
Abstract
Although free-fermion systems are considered exactly solvable, they generically do not admit closed expressions for nonlocal quantities such as topological string correlations or entanglement measures. We derive closed expressions for such quantities for a dense subclass of certain classes of topological fermionic wires (classes BDI and AIII). Our results also apply to spin chains called generalised cluster models. While there is a bijection between general models in these classes and Laurent polynomials, restricting to polynomials with degenerate zeros leads to a plethora of exact results: (1) we derive closed expressions for the string correlation functions—the order parameters for the topological phases in these classes; (2) we obtain an exact formula for the characteristic polynomial of the correlation matrix, giving insight into ground state entanglement; (3) the latter implies that the ground state can be described by a matrix product state (MPS) with a finite bond dimension in the thermodynamic limit—an independent and explicit construction for the BDI class is given in a concurrent work [Phys. Rev. Res. 3 (2021), 033265, 26 pages, arXiv:2105.12143]; (4) for BDI models with even integer topological invariant, all non-zero eigenvalues of the transfer matrix are identified as products of zeros and inverse zeros of the aforementioned polynomial. General models in these classes can be obtained by taking limits of the models we analyse, giving a further application of our results. To the best of our knowledge, these results constitute the first application of Day's formula and Gorodetsky's formula for Toeplitz determinants to many-body quantum physics.
Key words: topological insulators; correlation functions; entanglement entropy; Toeplitz determinants.
pdf (951 kb)
tex (73 kb)
References
- Abanov A.G., Korepin V.E., On the probability of ferromagnetic strings in antiferromagnetic spin chains, Nuclear Phys. B 647 (2002), 565-580, arXiv:cond-mat/0206353.
- Affleck I., Kennedy T., Lieb E.H., Tasaki H., Rigorous results on valence-bond ground states in antiferromagnets, Phys. Rev. Lett. 59 (1987), 799-802.
- Altland A., Zirnbauer M.R., Nonstandard symmetry classes in mesoscopic normal-superconducting hybrid structures, Phys. Rev. B 55 (1997), 1142-1161, arXiv:cond-mat/9602137.
- Bahri Y., Vishwanath A., Detecting Majorana fermions in quasi-one-dimensional topological phases using nonlocal order parameters, Phys. Rev. B 89 (2014), 155135, 13 pages, arXiv:1303.2600.
- Balabanov O., Erkensten D., Johannesson H., Topology of critical chiral phases: Multiband insulators and superconductors, Phys. Rev. Res. 3 (2021), 043048, 14 pages, arXiv:2104.08853.
- Barouch E., McCoy B.M., Statistical mechanics of the $XY$ model. II. Spin-correlation functions, Phys. Rev. A 3 (1971), 786-804.
- Basor E., Dubail J., Emig T., Santachiara R., Modified Szegö-Widom asymptotics for block Toeplitz matrices with zero modes, J. Stat. Phys. 174 (2019), 28-39, arXiv:1806.09494.
- Basor E.L., Forrester P.J., Formulas for the evaluation of Toeplitz determinants with rational generating functions, Math. Nachr. 170 (1994), 5-18.
- Bernevig B.A., Hughes T.L., Zhang S.C., Quantum spin Hall effect and topological phase transition in HgTe quantum wells, Science 314 (2006), 1757-1761, arXiv:cond-mat/0611399.
- Böttcher A., Status report on rationally generated block Toeplitz and Wiener-Hopf determinants, Unpublished manuscript, 1989.
- Böttcher A., Asymptotic formulas for rationally generated block Toeplitz determinants, in Seminar Analysis (Berlin, 1988), Akademie-Verlag, Berlin, 1988, 1-13.
- Böttcher A., Silbermann B., Analysis of Toeplitz operators, Springer Monogr. Math., Springer, Berlin, 2006.
- Bultheel A., The asymptotic behavior of Toeplitz determinants generated by the Laurent coefficients of a meromorphic function, SIAM J. Algebraic Discrete Methods 6 (1985), 624-629.
- Chen X., Gu Z.-C., Wen X.-G., Classification of gapped symmetric phases in one-dimensional spin systems, Phys. Rev. B 83 (2011), 035107, 19 pages, arXiv:1008.3745.
- Chung M.-C., Peschel I., Density-matrix spectra of solvable fermionic systems, Phys. Rev. B 64 (2001), 064412, 7 pages, arXiv:cond-mat/0103301.
- Cirac J.I., Pérez-García D., Schuch N., Verstraete F., Matrix product states and projected entangled pair states: Concepts, symmetries, theorems, Rev. Modern Phys. 93 (2021), 045003, 65 pages, arXiv:2011.12127.
- Day K.M., Toeplitz matrices generated by the Laurent series expansion of an arbitrary rational function, Trans. Amer. Math. Soc. 206 (1975), 224-245.
- Deift P., Its A., Krasovsky I., Asymptotics of Toeplitz, Hankel, and Toeplitz + Hankel determinants with Fisher-Hartwig singularities, Ann. of Math. 174 (2011), 1243-1299, arXiv:0905.0443.
- Deift P., Its A., Krasovsky I., Toeplitz matrices and Toeplitz determinants under the impetus of the Ising model: Some history and some recent results, Comm. Pure Appl. Math. 66 (2013), 1360-1438, arXiv:1207.4990.
- Dingle R.B., Asymptotic expansions: their derivation and interpretation, Academic Press, London, 1973.
- Fannes M., Nachtergaele B., Werner R.F., Finitely correlated states on quantum spin chains, Comm. Math. Phys. 144 (1992), 443-490.
- Fidkowski L., Kitaev A., Topological phases of fermions in one dimension, Phys. Rev. B 83 (2011), 075103, 13 pages, arXiv:1008.4138.
- Fisher M.E., The nature of critical points, University of Colorado Press, 1965.
- Forrester P.J., A constant term identity and its relationship to the log-gas and some quantum many-body systems, Phys. Lett. A 163 (1992), 121-126.
- Forrester P.J., Selberg correlation integrals and the $1/r^2$ quantum many-body system, Nuclear Phys. B 388 (1992), 671-699.
- Franchini F., Abanov A.G., Asymptotics of Toeplitz determinants and the emptiness formation probability for the $XY$ spin chain, J. Phys. A 38 (2005), 5069-5095, arXiv:cond-mat/0502015.
- Franchini F., Its A.R., Korepin V.E., Renyi entropy of the $XY$ spin chain, J. Phys. A 41 (2008), 025302, 18 pages, arXiv:0707.2534.
- Franchini F., Its A.R., Korepin V.E., Takhtajan L.A., Spectrum of the density matrix of a large block of spins of the $XY$ model in one dimension, Quantum Inf. Process. 10 (2011), 325-341.
- Fu L., Kane C.L., Mele E.J., Topological insulators in three dimensions, Phys. Rev. Lett. 98 (2007), 106803, 4 pages, arXiv:cond-mat/0607699.
- Fuji Y., Pollmann F., Oshikawa M., Distinct trivial phases protected by a point-group symmetry in quantum spin chains, Phys. Rev. Lett. 114 (2015), 177204, 5 pages, arXiv:1409.8616.
- Garling D.J.H., A course in mathematical analysis. Vol. III. Complex analysis, measure and integration, Cambridge University Press, Cambridge, 2014.
- Gohberg I., Lancaster P., Rodman L., Matrix polynomials, Comput. Sci. Appl. Math., Academic Press, Inc., New York, 1982.
- Gorodetskiǐ M.B., Toeplitz determinants generated by rational functions, Deposited at Viniti 1981, RZhMat 1982: 3 A 444.
- Gorodetskiǐ M.B., Toeplitz determinants generated by rational functions, in Integral and Differential Equations and Approximate Solutions, Kalmytsk. Gos. Univ., Elista, 1985, 49-54.
- Hartwig R.E., Fisher M.E., Asymptotic behavior of Toeplitz matrices and determinants, Arch. Rational Mech. Anal. 32 (1969), 190-225.
- Hasan M.Z., Kane C.L., Colloquium: Topological insulators, Rev. Mod. Phys. 82 (2010), 3045-3067.
- Hutchinson J., Keating J.P., Mezzadri F., On relations between one-dimensional quantum and two-dimensional classical spin systems, Adv. Math. Phys. 2015 (2015), 652026, 18 pages, arXiv:1503.07712.
- Its A.R., Jin B.-Q., Korepin V.E., Entanglement in the $XY$ spin chain, J. Phys. A 38 (2005), 2975-2990, arXiv:quant-ph/0409027.
- Its A.R., Jin B.-Q., Korepin V.E., Entropy of $XY$ spin chain and block Toeplitz determinants, in Universality and Renormalization, Fields Inst. Commun., Vol. 50, American Mathematical Society, Providence, RI, 2007, 151-183, arXiv:quant-ph/0606178.
- Its A.R., Korepin V.E., The Fisher-Hartwig formula and entanglement entropy, J. Stat. Phys. 137 (2009), 1014-1039.
- Its A.R., Mezzadri F., Mo M.Y., Entanglement entropy in quantum spin chains with finite range interaction, Comm. Math. Phys. 284 (2008), 117-185, arXiv:0708.0161.
- Jin B.-Q., Korepin V.E., Quantum spin chain, Toeplitz determinants and the Fisher-Hartwig conjecture, J. Stat. Phys. 116 (2004), 79-95, arXiv:quant-ph/0304108.
- Jones N.G., Bibo J., Jobst B., Pollmann F., Smith A., Verresen R., Skeleton of matrix-product-state-solvable models connecting topological phases of matter, Phys. Rev. Res. 3 (2021), 033265, 26 pages, arXiv:2105.12143.
- Jones N.G., Verresen R., Asymptotic correlations in gapped and critical topological phases of 1D quantum systems, J. Stat. Phys. 175 (2019), 1164-1213, arXiv:1805.06904.
- Kane C.L., Mele E.J., ${Z}_{2}$ Topological order and the quantum spin Hall effect, Phys. Rev. Lett. 95 (2005), 146802, 4 pages, arXiv:cond-mat/0506581.
- Keating J.P., Mezzadri F., Random matrix theory and entanglement in quantum spin chains, Comm. Math. Phys. 252 (2004), 543-579, arXiv:quant-ph/0407047.
- Kitaev A., Unpaired Majorana fermions in quantum wires, Phys.-Usp. 44 (2001), 131-136, arXiv:cond-mat/0010440.
- Kitaev A.Y, Periodic table for topological insulators and superconductors, AIP Conf. Proc. 1134 (2009), 22-30, arXiv:0901.2686.
- Korepin V.E., Bogoliubov N.M., Izergin A.G., Quantum inverse scattering method and correlation functions, Cambridge Monogr. Math. Phys., Cambridge University Press, Cambridge, 1993.
- Korepin V.E., Izergin A.G., Essler F.H.L., Uglov D.B., Correlation function of the spin-$\frac12$ XXX antiferromagnet, Phys. Lett. A 190 (1994), 182-184, arXiv:cond-mat/9403066.
- Kraus C.V., Schuch N., Verstraete F., Cirac J.I., Fermionic projected entangled pair states, Phys. Rev. A 81 (2010), 052338, 6 pages, arXiv:0904.4667.
- Kurmann J., Thomas H., Müller G., Antiferromagnetic long-range order in the anisotropic quantum spin chain, Phys. A 112 (1982), 235-255.
- Lieb E., Schultz T., Mattis D., Two soluble models of an antiferromagnetic chain, Ann. Physics 16 (1961), 407-466.
- Marić V., Franchini F., Asymptotic behavior of Toeplitz determinants with a delta function singularity, J. Phys. A 54 (2020), 025201, 28 pages, arXiv:2006.01922.
- Marić V., Giampaolo S., Franchini F., Quantum phase transition induced by topological frustration, Comm. Phys. 3 (2020), 220, 6 pages, arXiv:2002.07197.
- Marić V., Giampaolo S.M., Kuić D., Franchini F., The frustration of being odd: how boundary conditions can destroy local order, New J. Phys. 22 (2020), 083024, 9 pages, arXiv:1908.10876.
- McCoy B.M., Advanced statistical mechanics, Internat. Ser. Monogr. Phys., Vol. 146, Oxford University Press, Oxford, 2010.
- Moore J.E., Balents L., Topological invariants of time-reversal-invariant band structures, Phys. Rev. B 75 (2007), 121306, 4 pages, arXiv:cond-mat/0607314.
- Motrunich O., Damle K., Huse D.A., Griffiths effects and quantum critical points in dirty superconductors without spin-rotation invariance: One-dimensional examples, Phys. Rev. B 63 (2001), 224204, 13 pages, arXiv:cond-mat/0011200.
- Müller G., Shrock R.E., Implications of direct-product ground states in the one-dimensional quantum XYZ and XY spin chains, Phys. Rev. B 32 (1985), 5845-5850.
- Perez-Garcia D., Verstraete F., Wolf M.M., Cirac J.I., Matrix product state representations, Quantum Inf. Comput. 7 (2007), 401-430, arXiv:quant-ph/0608197.
- Pérez-García D., Wolf M.M., Sanz M., Verstraete F., Cirac J.I., String order and symmetries in quantum spin lattices, Phys. Rev. Lett. 100 (2008), 167202, 4 pages, arXiv:0802.0447.
- Peschel I., Calculation of reduced density matrices from correlation functions, J. Phys. A 36 (2003), L205-L208, arXiv:cond-mat/0212631.
- Peschel I., On the entanglement entropy for an $XY$ spin chain, J. Stat. Mech. Theory Exp. (2004), P12005, 6 pages, arXiv:cond-mat/0410416.
- Peschel I., Eisler V., Reduced density matrices and entanglement entropy in free lattice models, J. Phys. A 42 (2009), 504003, 30 pages, arXiv:0906.1663.
- Pollmann F., Symmetry-protected topological phases in one-dimensional systems, in Topological Aspects of Condensed Matter Physics (Les Houches, Session CIII, 2014), Oxford University Press, Oxford, 2017, 361-386.
- Pollmann F., Turner A.M., Detection of symmetry-protected topological phases in one dimension, Phys. Rev. B 86 (2012), 125441, 13 pages, arXiv:1204.0704.
- Pollmann F., Turner A.M., Oshikawa M., Entanglement spectrum of a topological phase in one dimension, Phys. Rev. B 81 (2010), 064439, 10 pages, arXiv:0910.1811.
- Rams M.M., Zauner V., Bal M., Haegeman J., Verstraete F., Truncating an exact matrix product state for the XY model: Transfer matrix and its renormalization, Phys. Rev. B 92 (2015), 235150, 15 pages, arXiv:1411.2607.
- Roy R., Topological phases and the quantum spin Hall effect in three dimensions, Phys. Rev. B 79 (2009), 195322, 5 pages.
- Ryu S., Schnyder A.P., Furusaki A., Ludwig A.W.W., Topological insulators and superconductors: tenfold way and dimensional hierarchy, New J. Phys. 12 (2010), 065010, 60 pages, arXiv:0912.2157.
- Sachdev S., Quantum phase transitions, Cambridge University Press, Cambridge, 2011.
- Sanz M., Wolf M.M., Pérez-García D., Cirac J.I., Matrix product states: Symmetries and two-body Hamiltonians, Phys. Rev. A 79 (2009), 042308, 10 pages, arXiv:0901.2223.
- Schnyder A.P., Ryu S., Furusaki A., Ludwig A.W.W., Classification of topological insulators and superconductors in three spatial dimensions, Phys. Rev. B 78 (2008), 195125, 22 pages, arXiv:0803.2786.
- Schuch N., Cirac J.I., Wolf M.M., Quantum states on harmonic lattices, Comm. Math. Phys. 267 (2006), 65-92, arXiv:quant-ph/0509166.
- Schuch N., Pérez-García D., Cirac I., Classifying quantum phases using matrix product states and projected entangled pair states, Phys. Rev. B 84 (2011), 165139, 21 pages, arXiv:1010.3732.
- Schuch N., Wolf M.M., Cirac J.I., Gaussian matrix product states, in Quantum Information and Many Body Quantum Systems, CRM Series, Edizioni della Normale, Pisa, 2008, 129-142, arXiv:1201.3945.
- Senthil T., Symmetry-protected topological phases of quantum matter, Annu. Rev. Condensed Matter Phys. 6 (2015), 299-324, arXiv:1405.4015.
- Shiroishi M., Takahashi M., Nishiyama Y., Emptiness formation probability for the one-dimensional isotropic XY model, J. Phys. Soc. Jpn. 70 (2001), 3535-3543, arXiv:cond-mat/0106062.
- Smith A., Jobst B., Green A.G., Pollmann F., Crossing a topological phase transition with a quantum computer, Phys. Rev. Res. 4 (2022), L022020, 8 pages, arXiv:1910.05351.
- Su W.P., Schrieffer J.R., Heeger A.J., Solitons in Polyacetylene, Phys. Rev. Lett. 42 (1979), 1698-1701.
- Suzuki M., Relationship among exactly soluble models of critical phenomena. I. $2D$ Ising model, dimer problem and the generalized $XY$-model, Progr. Theoret. Phys. 46 (1971), 1337-1359.
- SzegHo G., On certain Hermitian forms associated with the Fourier series of a positive function, Comm. Sém. Math. Univ. Lund 1952 (1952), 228-238.
- Taylor J.H., Müller G., Limitations of spin-wave theory in $T=0$ spin dynamics, Phys. Rev. B 28 (1983), 1529-1533.
- Timonin P.N., Chitov G.Y., Disorder lines, modulation, and partition function zeros in free fermion models, Phys. Rev. B 104 (2021), 045106, 12 pages, arXiv:2105.01307.
- Tong P., Liu X., Lee-Yang zeros of periodic and quasiperiodic anisotropic $XY$ chains in a transverse field, Phys. Rev. Lett. 97 (2006), 017201, 4 pages.
- Verresen R., Jones N.G., Pollmann F., Topology and edge modes in quantum critical chains, Phys. Rev. Lett. 120 (2018), 057001, 5 pages, arXiv:1709.03508.
- Vidal G., Latorre J.I., Rico E., Kitaev A., Entanglement in quantum critical phenomena, Phys. Rev. Lett. 90 (2003), 227902, 4 pages, arXiv:quant-ph/0211074.
- White S.R., Density matrix formulation for quantum renormalization groups, Phys. Rev. Lett. 69 (1992), 2863-2866.
- White S.R., Density-matrix algorithms for quantum renormalization groups, Phys. Rev. B 48 (1993), 10345-10356.
- Widom H., Asymptotic behavior of block Toeplitz matrices and determinants, Adv. Math. 13 (1974), 284-322.
- Wolf M.M., Ortiz G., Verstraete F., Cirac J.I., Quantum phase transitions inmatrix product systems, Phys. Rev. Lett. 97 (2006), 110403, 4 pages, arXiv:cond-mat/0512180.
- Wolfram Research, Inc., textscMathematica, Version 12.1, Champaign, IL, 2020, https://www.wolfram.com/mathematica.
- Wouters J., Katsura H., Schuricht D., Interrelations among frustration-free models via Witten's conjugation, SciPost Phys. 4 (2021), 027, 32 pages, arXiv:2005.12825.
- Zauner V., Draxler D., Vanderstraeten L., Degroote M., Haegeman J., Rams M.M., Stojevic V., Schuch N., Verstraete F., Transfer matrices and excitations with matrix product states, New J. Phys. 17 (2015), 053002, 33 pages, arXiv:1408.5140.
|
|