|
SIGMA 19 (2023), 097, 60 pages arXiv:2110.12429
https://doi.org/10.3842/SIGMA.2023.097
The Multiplication Formulas of Weighted Quantum Cluster Functions
Zhimin Chen a, Jie Xiao b and Fan Xu c
a) Department of Mathematics, Tsinghua University, Beijing 100084, P. R. China
b) School of Mathematical Sciences, Beijing Normal University, Beijing 100875, P. R. China
c) Department of Mathematical Sciences, Tsinghua University, Beijing 100084, P. R. China
Received June 02, 2022, in final form November 26, 2023; Published online December 13, 2023
Abstract
By applying the property of Ext-symmetry and the affine space structure of certain fibers, we introduce the notion of weighted quantum cluster functions and prove their multiplication formulas associated to abelian categories with Ext-symmetry and 2-Calabi-Yau triangulated categories with cluster-tilting objects.
Key words: weighted quantum cluster functions; cluster categories; 2-Calabi-Yau triangulated categories; preprojective algebras.
pdf (740 kb)
tex (51 kb)
References
- Berenstein A., Zelevinsky A., Quantum cluster algebras, Adv. Math. 195 (2005), 405-455, arXiv:math.QA/0404446.
- Buan A.B., Iyama O., Reiten I., Scott J., Cluster structures for 2-Calabi-Yau categories and unipotent groups, Compos. Math. 145 (2009), 1035-1079, arXiv:math.RT/0701557.
- Buan A.B., Marsh R., Reineke M., Reiten I., Todorov G., Tilting theory and cluster combinatorics, Adv. Math. 204 (2006), 572-618, arXiv:math.RT/0402054.
- Caldero P., Chapoton F., Cluster algebras as Hall algebras of quiver representations, Comment. Math. Helv. 81 (2006), 595-616, arXiv:math.RT/0410187.
- Caldero P., Keller B., From triangulated categories to cluster algebras. II, Ann. Sci. École Norm. Sup. (4) 39 (2006), 983-1009, arXiv:math.RT/0510251.
- Caldero P., Keller B., From triangulated categories to cluster algebras, Invent. Math. 172 (2008), 169-211, arXiv:math.RT/0506018.
- Chen X., Ding M., Zhang H., The cluster multiplication theorem for acyclic quantum cluster algebras, Int. Math. Res. Not. 2023 (2023),20533-20573, arXiv:2108.03558.
- Ding M., Xu F., A quantum analogue of generic bases for affine cluster algebras, Sci. China Math. 55 (2012), 2045-2066, arXiv:1105.2421.
- Fomin S., Zelevinsky A., Cluster algebras. I. Foundations, J. Amer. Math. Soc. 15 (2002), 497-529, arXiv:math.RT/0104151.
- Geiss C., Leclerc B., Schröer J., Semicanonical bases and preprojective algebras. II. A multiplication formula, Compos. Math. 143 (2007), 1313-1334, arXiv:math.RT/0509483.
- Geiss C., Leclerc B., Schröer J., Kac-Moody groups and cluster algebras, Adv. Math. 228 (2011), 329-433, arXiv:1001.3545.
- Geiss C., Leclerc B., Schröer J., Generic bases for cluster algebras and the Chamber ansatz, J. Amer. Math. Soc. 25 (2012), 21-76, arXiv:1004.2781.
- Hubery A., Acyclic cluster algebras via Ringel-Hall algebras, Preprint.
- Keller B., On triangulated orbit categories, Doc. Math. 10 (2005), 551-581, arXiv:math.RT/0503240.
- Keller B., Plamondon P.G., Qin F., A refined multiplication formula for cluster characters, arXiv:2301.01059.
- Palu Y., Cluster characters for 2-Calabi-Yau triangulated categories, Ann. Inst. Fourier (Grenoble) 58 (2008), 2221-2248, arXiv:math.RT/0703540.
- Palu Y., Cluster characters II: a multiplication formula, Proc. Lond. Math. Soc. (3) 104 (2012), 57-78, arXiv:0903.3281.
- Qin F., Quantum cluster variables via Serre polynomials, J. Reine Angew. Math. 668 (2012), 149-190, arXiv:1004.4171.
- Qin F., Triangular bases in quantum cluster algebras and monoidal categorification conjectures, Duke Math. J. 166 (2017), 2337-2442, arXiv:1501.04085.
- Riedtmann C., Lie algebras generated by indecomposables, J. Algebra 170 (1994), 526-546.
- Rupel D., On a quantum analog of the Caldero-Chapoton formula, Int. Math. Res. Not. 2011 (2011), 3207-3236, arXiv:1003.2652.
- Xiao J., Xu F., Green's formula with ${\mathbb C}^*$-action and Caldero-Keller's formula for cluster algebras, in Representation Theory of Algebraic Groups and Quantum Groups, Progr. Math., Vol. 284, Birkhäuser, New York, 2010, 313-348, arXiv:0707.1175.
- Xiao J., Xu F., Yang F., Motivic cluster multiplication formulas in 2-Calabi-Yau categories, arXiv:2310.04849.
- Xu F., On the cluster multiplication theorem for acyclic cluster algebras, Trans. Amer. Math. Soc. 362 (2010), 753-776, arXiv:0711.3255.
|
|