Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 19 (2023), 094, 17 pages      arXiv:2211.16706      https://doi.org/10.3842/SIGMA.2023.094

A $3 \times 3$ Lax Form for the $q$-Painlevé Equation of Type $E_6$

Kanam Park
National Institute of Technology, Toba College, 1-1, Ikegami-cho, Toba-shi, Mie, Japan

Received December 01, 2022, in final form November 05, 2023; Published online November 18, 2023

Abstract
For the $q$-Painlevé equation with affine Weyl group symmetry of type $E_6^{(1)}$, a $2\times 2$ matrix Lax form and a second order scalar lax form were known. We give a new $3\times 3$ matrix Lax form and a third order scalar equation related to it. Continuous limit is also discussed.

Key words: Lax formalism; $q$-Painlevé equation.

pdf (443 kb)   tex (19 kb)  

References

  1. Boalch P., Quivers and difference Painlevé equations, in Groups and Symmetries,CRM Proc. Lect. Notes, Vol. 47, American Mathematical Society, Providence, RI, 2009, 25-51, arXiv:0706.2634.
  2. Dzhamay A., Knizel A., $q$-Racah ensemble and $q$-${\rm P}(E_7^{(1)}/A_1^{(1)})$ discrete Painlevé equation, Int. Math. Res. Not. 2020 (2020), 9797-9843, arXiv:1903.06159.
  3. Dzhamay A., Takenawa T., On some applications of Sakai's geometric theory of discrete Painlevé equations, SIGMA 14 (2018), 075, 20 pages, arXiv:1804.10341.
  4. Grammaticos B., Ramani A., The hunting for the discrete Painlevé equations, Regul. Chaotic Dyn. 5 (2000), 53-66.
  5. Jimbo M., Sakai H., A $q$-analog of the sixth Painlevé equation, Lett. Math. Phys. 38 (1996), 145-154, arXiv:chao-dyn/9507010.
  6. Kajiwara K., Noumi M., Yamada Y., Geometric aspects of Painlevé equations, J. Phys. A 50 (2017), 073001, 164 pages, arXiv:1509.08186.
  7. Knizel A., Moduli spaces of $q$-connections and gap probabilities, Int. Math. Res. Not. 2016 (2016), 6921-6954, arXiv:1506.06718.
  8. Park K., A certain generalization of $q$-hypergeometric functions and their related connection preserving deformation II, Funkcial. Ekvac. 65 (2022), 311-328, arXiv:2005.04992.
  9. Ramani A., Grammaticos B., Hietarinta J., Discrete versions of the Painlevé equations, Phys. Rev. Lett. 67 (1991), 1829-1832.
  10. Ramani A., Grammaticos B., Tamizhmani T., Tamizhmani K.M., Special function solutions of the discrete Painlevé equations, Comput. Math. Appl. 42 (2001), 603-614.
  11. Sakai H., A $q$-analog of the Garnier system, Funkcial. Ekvac. 48 (2005), 273-297.
  12. Sakai H., Lax form of the $q$-Painlevé equation associated with the $A^{(1)}_2$ surface, J. Phys. A 39 (2006), 12203-12210.
  13. Suzuki T., A $q$-analogue of the Drinfeld-Sokolov hierarchy of type $A$ and $q$-Painlevé system, in Algebraic and Analytic Aspects of Integrable Systems and Painlevé Equations, Contemp. Math., Vol. 651, American Mathematical Society, Providence, RI, 2015, 25-38, arXiv:1105.4240.
  14. Suzuki T., A Lax formulation of a generalized $q$-Garnier system, Math. Phys. Anal. Geom. 24 (2021), 38, 12 pages, arXiv:2103.15336.
  15. Witte N.S., Ormerod C.M., Construction of a Lax pair for the $E_6^{(1)}$ $q$-Painlevé system, SIGMA 8 (2012), 097, 27 pages, arXiv:1207.0041.
  16. Yamada Y., Lax formalism for $q$-Painlevé equations with affine Weyl group symmetry of type $E^{(1)}_n$, Int. Math. Res. Not. 2011 (2011), 3823-3838, arXiv:1004.1687.

Previous article  Next article  Contents of Volume 19 (2023)