|
SIGMA 19 (2023), 094, 17 pages arXiv:2211.16706
https://doi.org/10.3842/SIGMA.2023.094
A $3 \times 3$ Lax Form for the $q$-Painlevé Equation of Type $E_6$
Kanam Park
National Institute of Technology, Toba College, 1-1, Ikegami-cho, Toba-shi, Mie, Japan
Received December 01, 2022, in final form November 05, 2023; Published online November 18, 2023
Abstract
For the $q$-Painlevé equation with affine Weyl group symmetry of type $E_6^{(1)}$, a $2\times 2$ matrix Lax form and a second order scalar lax form were known. We give a new $3\times 3$ matrix Lax form and a third order scalar equation related to it. Continuous limit is also discussed.
Key words: Lax formalism; $q$-Painlevé equation.
pdf (443 kb)
tex (19 kb)
References
- Boalch P., Quivers and difference Painlevé equations, in Groups and Symmetries,CRM Proc. Lect. Notes, Vol. 47, American Mathematical Society, Providence, RI, 2009, 25-51, arXiv:0706.2634.
- Dzhamay A., Knizel A., $q$-Racah ensemble and $q$-${\rm P}(E_7^{(1)}/A_1^{(1)})$ discrete Painlevé equation, Int. Math. Res. Not. 2020 (2020), 9797-9843, arXiv:1903.06159.
- Dzhamay A., Takenawa T., On some applications of Sakai's geometric theory of discrete Painlevé equations, SIGMA 14 (2018), 075, 20 pages, arXiv:1804.10341.
- Grammaticos B., Ramani A., The hunting for the discrete Painlevé equations, Regul. Chaotic Dyn. 5 (2000), 53-66.
- Jimbo M., Sakai H., A $q$-analog of the sixth Painlevé equation, Lett. Math. Phys. 38 (1996), 145-154, arXiv:chao-dyn/9507010.
- Kajiwara K., Noumi M., Yamada Y., Geometric aspects of Painlevé equations, J. Phys. A 50 (2017), 073001, 164 pages, arXiv:1509.08186.
- Knizel A., Moduli spaces of $q$-connections and gap probabilities, Int. Math. Res. Not. 2016 (2016), 6921-6954, arXiv:1506.06718.
- Park K., A certain generalization of $q$-hypergeometric functions and their related connection preserving deformation II, Funkcial. Ekvac. 65 (2022), 311-328, arXiv:2005.04992.
- Ramani A., Grammaticos B., Hietarinta J., Discrete versions of the Painlevé equations, Phys. Rev. Lett. 67 (1991), 1829-1832.
- Ramani A., Grammaticos B., Tamizhmani T., Tamizhmani K.M., Special function solutions of the discrete Painlevé equations, Comput. Math. Appl. 42 (2001), 603-614.
- Sakai H., A $q$-analog of the Garnier system, Funkcial. Ekvac. 48 (2005), 273-297.
- Sakai H., Lax form of the $q$-Painlevé equation associated with the $A^{(1)}_2$ surface, J. Phys. A 39 (2006), 12203-12210.
- Suzuki T., A $q$-analogue of the Drinfeld-Sokolov hierarchy of type $A$ and $q$-Painlevé system, in Algebraic and Analytic Aspects of Integrable Systems and Painlevé Equations, Contemp. Math., Vol. 651, American Mathematical Society, Providence, RI, 2015, 25-38, arXiv:1105.4240.
- Suzuki T., A Lax formulation of a generalized $q$-Garnier system, Math. Phys. Anal. Geom. 24 (2021), 38, 12 pages, arXiv:2103.15336.
- Witte N.S., Ormerod C.M., Construction of a Lax pair for the $E_6^{(1)}$ $q$-Painlevé system, SIGMA 8 (2012), 097, 27 pages, arXiv:1207.0041.
- Yamada Y., Lax formalism for $q$-Painlevé equations with affine Weyl group symmetry of type $E^{(1)}_n$, Int. Math. Res. Not. 2011 (2011), 3823-3838, arXiv:1004.1687.
|
|