Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 19 (2023), 093, 17 pages      arXiv:2307.10959      https://doi.org/10.3842/SIGMA.2023.093

Vector Fields and Flows on Subcartesian Spaces

Yael Karshon ab and Eugene Lerman c
a) School of Mathematical Sciences, Tel-Aviv University, Tel-Aviv, Israel
b) Department of Mathematics, University of Toronto, Toronto, Ontario, Canada
c) Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA

Received July 21, 2023, in final form November 08, 2023; Published online November 16, 2023

Abstract
This paper is part of a series of papers on differential geometry of $C^\infty$-ringed spaces. In this paper, we study vector fields and their flows on a class of singular spaces. Our class includes arbitrary subspaces of manifolds, as well as symplectic and contact quotients by actions of compact Lie groups. We show that derivations of the $C^\infty$-ring of global smooth functions integrate to smooth flows.

Key words: differential space; $C^\infty$-ring; subcartesian; flow.

pdf (458 kb)   tex (23 kb)  

References

  1. Breuer M., Marshall C.D., Banachian differentiable spaces, Math. Ann. 237 (1978), 105-120.
  2. Cushman R., Reduction, Brouwer's Hamiltonian, and the critical inclination, Celestial Mech. 31 (1983), 401-429.
  3. Cushman R., Śniatycki J., On subcartesian spaces Leibniz' rule implies the chain rule, Canad. Math. Bull. 63 (2020), 348-357, arXiv:1903.10004.
  4. Joyce D., Algebraic geometry over $C^{\infty}$-rings, Mem. Amer. Math. Soc. 260 (2019), v+139 pages, arXiv:1001.0023.
  5. Karshon Y., Lerman E., Vector fields and flows on not-necessarily-embeddable subcartesian differential spaces, in preparation.
  6. Kowalczyk A., Whitney's and Nash's embedding theorems for differential spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. 28 (1980), 385-390.
  7. Kriegl A., Michor P.W., The convenient setting of global analysis, Math. Surv. and Monogr., Vol. 53, American Mathematical Society, Providence, RI, 1997.
  8. Lee J.M., Introduction to smooth manifolds, Grad. Texts Math., Vol. 218, Springer, New York, 2012.
  9. Lerman E., Differential forms on $C^\infty$-ringed spaces, arXiv:2212.11163.
  10. Lerman E., Cartan calculus $C^\infty$-ringed spaces, arXiv:2307.05604.
  11. Motreanu D., Embeddings of $C^{\infty}$-sub-Cartesian spaces, An. Şti. Univ. ''Al. I. Cuza'' Iaşi Secţ. I a Mat. (N.S.) 25 (1979), 65-70.
  12. Muñoz Díaz J., Ortega Aramburu J. M., Sobre las álgebras localmente convexas, Collectanea Math. 20 (1969), 127-149.
  13. Navarro González J.A., Sancho de Salas J.B., $C^\infty$-differentiable spaces, Lect. Notes Math., Vol. 1824, Springer, Berlin, 2003.
  14. Pysiak L., Sasin W., Heller M., Miller T., Functorial differential spaces and the infinitesimal structure of space-time, Rep. Math. Phys. 85 (2020), 443-454, arXiv:1910.05581.
  15. Sikorski R., Differential modules, Colloq. Math. 24 (1971), 45-79.
  16. Sjamaar R., Lerman E., Stratified symplectic spaces and reduction, Ann. of Math. 134 (1991), 375-422.
  17. Śniatycki J., Orbits of families of vector fields on subcartesian spaces, Ann. Inst. Fourier 53 (2003), 2257-2296, arXiv:math.DG/0211212.
  18. Śniatycki J., Differential geometry of singular spaces and reduction of symmetry, New Math. Monogr., Vol. 23, Cambridge University Press, Cambridge, 2013.
  19. Yamashita T., Derivations on a $C^\infty$-ring, Comm. Algebra 44 (2016), 4811-4822.

Previous article  Next article  Contents of Volume 19 (2023)