|
SIGMA 19 (2023), 093, 17 pages arXiv:2307.10959
https://doi.org/10.3842/SIGMA.2023.093
Vector Fields and Flows on Subcartesian Spaces
Yael Karshon ab and Eugene Lerman c
a) School of Mathematical Sciences, Tel-Aviv University, Tel-Aviv, Israel
b) Department of Mathematics, University of Toronto, Toronto, Ontario, Canada
c) Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
Received July 21, 2023, in final form November 08, 2023; Published online November 16, 2023
Abstract
This paper is part of a series of papers on differential geometry of $C^\infty$-ringed spaces. In this paper, we study vector fields and their flows on a class of singular spaces. Our class includes arbitrary subspaces of manifolds, as well as symplectic and contact quotients by actions of compact Lie groups. We show that derivations of the $C^\infty$-ring of global smooth functions integrate to smooth flows.
Key words: differential space; $C^\infty$-ring; subcartesian; flow.
pdf (458 kb)
tex (23 kb)
References
- Breuer M., Marshall C.D., Banachian differentiable spaces, Math. Ann. 237 (1978), 105-120.
- Cushman R., Reduction, Brouwer's Hamiltonian, and the critical inclination, Celestial Mech. 31 (1983), 401-429.
- Cushman R., Śniatycki J., On subcartesian spaces Leibniz' rule implies the chain rule, Canad. Math. Bull. 63 (2020), 348-357, arXiv:1903.10004.
- Joyce D., Algebraic geometry over $C^{\infty}$-rings, Mem. Amer. Math. Soc. 260 (2019), v+139 pages, arXiv:1001.0023.
- Karshon Y., Lerman E., Vector fields and flows on not-necessarily-embeddable subcartesian differential spaces, in preparation.
- Kowalczyk A., Whitney's and Nash's embedding theorems for differential spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. 28 (1980), 385-390.
- Kriegl A., Michor P.W., The convenient setting of global analysis, Math. Surv. and Monogr., Vol. 53, American Mathematical Society, Providence, RI, 1997.
- Lee J.M., Introduction to smooth manifolds, Grad. Texts Math., Vol. 218, Springer, New York, 2012.
- Lerman E., Differential forms on $C^\infty$-ringed spaces, arXiv:2212.11163.
- Lerman E., Cartan calculus $C^\infty$-ringed spaces, arXiv:2307.05604.
- Motreanu D., Embeddings of $C^{\infty}$-sub-Cartesian spaces, An. Şti. Univ. ''Al. I. Cuza'' Iaşi Secţ. I a Mat. (N.S.) 25 (1979), 65-70.
- Muñoz Díaz J., Ortega Aramburu J. M., Sobre las álgebras localmente convexas, Collectanea Math. 20 (1969), 127-149.
- Navarro González J.A., Sancho de Salas J.B., $C^\infty$-differentiable spaces, Lect. Notes Math., Vol. 1824, Springer, Berlin, 2003.
- Pysiak L., Sasin W., Heller M., Miller T., Functorial differential spaces and the infinitesimal structure of space-time, Rep. Math. Phys. 85 (2020), 443-454, arXiv:1910.05581.
- Sikorski R., Differential modules, Colloq. Math. 24 (1971), 45-79.
- Sjamaar R., Lerman E., Stratified symplectic spaces and reduction, Ann. of Math. 134 (1991), 375-422.
- Śniatycki J., Orbits of families of vector fields on subcartesian spaces, Ann. Inst. Fourier 53 (2003), 2257-2296, arXiv:math.DG/0211212.
- Śniatycki J., Differential geometry of singular spaces and reduction of symmetry, New Math. Monogr., Vol. 23, Cambridge University Press, Cambridge, 2013.
- Yamashita T., Derivations on a $C^\infty$-ring, Comm. Algebra 44 (2016), 4811-4822.
|
|