|
SIGMA 19 (2023), 088, 17 pages arXiv:2307.03616
https://doi.org/10.3842/SIGMA.2023.088
Contribution to the Special Issue on Global Analysis on Manifolds in honor of Christian Bär for his 60th birthday
A Poincaré Formula for Differential Forms and Applications
Nicolas Ginoux a, Georges Habib ab and Simon Raulot c
a) Université de Lorraine, CNRS, IECL, F-57000 Metz, France
b) Lebanese University, Faculty of Sciences II, Department of Mathematics, P.O. Box 90656 Fanar-Matn, Lebanon
c) Université de Rouen Normandie, CNRS, Normandie Univ, LMRS UMR 6085, F-76000 Rouen, France
Received July 19, 2023, in final form October 26, 2023; Published online November 08, 2023
Abstract
We prove a new general Poincaré-type inequality for differential forms on compact Riemannian manifolds with nonempty boundary. When the boundary is isometrically immersed in Euclidean space, we derive a new inequality involving mean and scalar curvatures of the boundary only and characterize its limiting case in codimension one. A new Ros-type inequality for differential forms is also derived assuming the existence of a nonzero parallel form on the manifold.
Key words: manifolds with boundary; boundary value problems; Hodge Laplace operator; rigidity results.
pdf (421 kb)
tex (22 kb)
References
- Bourguignon J.-P., Hijazi O., Milhorat J.-L., Moroianu A., Moroianu S., A spinorial approach to Riemannian and conformal geometry, EMS Monogr. Math., European Mathematical Society (EMS), Zürich, 2015.
- Brown J.D., York Jr. J.W., Quasilocal energy and conserved charges derived from the gravitational action, Phys. Rev. D 47 (1993), 1407-1419, arXiv:gr-qc/9209012.
- do Carmo M.P., Warner F.W., Rigidity and convexity of hypersurfaces in spheres, J. Differential Geometry 4 (1970), 133-144.
- Duff G.F.D., Spencer D.C., Harmonic tensors on Riemannian manifolds with boundary, Ann. of Math. 56 (1952), 128-156.
- Friedrich T., Dirac operators in Riemannian geometry, Grad. Stud. Math., Vol. 25, American Mathematical Society, Providence, RI, 2000.
- Gallot S., Hulin D., Lafontaine J., Riemannian geometry, 3rd ed., Universitext, Springer, Berlin, 2004.
- Gallot S., Meyer D., Opérateur de courbure et laplacien des formes différentielles d'une variété riemannienne, J. Math. Pures Appl. 54 (1975), 259-284.
- Ginoux N., The Dirac spectrum, Lecture Notes in Math., Vol. 1976, Springer, Berlin, 2009.
- Hijazi O., Montiel S., A holographic principle for the existence of parallel spinor fields and an inequality of Shi-Tam type, Asian J. Math. 18 (2014), 489-506, arXiv:1502.04859.
- Lawson Jr. H.B., Michelsohn M.-L., Spin geometry, Princeton Math. Ser., Vol. 38, Princeton University Press, Princeton, NJ, 1989.
- Miao P., Tam L.-F., On second variation of Wang-Yau quasi-local energy, Ann. Henri Poincaré 15 (2014), 1367-1402, arXiv:1301.4656.
- Miao P., Tam L.-F., Xie N., Critical points of Wang-Yau quasi-local energy, Ann. Henri Poincaré 12 (2011), 987-1017, arXiv:1003.5048.
- Miao P., Wang X., Boundary effect of Ricci curvature, J. Differential Geom. 103 (2016), 59-82, arXiv:1408.2711.
- Raulot S., Savo A., A Reilly formula and eigenvalue estimates for differential forms, J. Geom. Anal. 21 (2011), 620-640, arXiv:1003.0817.
- Ros A., Compact hypersurfaces with constant higher order mean curvatures, Rev. Mat. Iberoamericana 3 (1987), 447-453.
- Savo A., On the first Hodge eigenvalue of isometric immersions, Proc. Amer. Math. Soc. 133 (2005), 587-594.
- Schwarz G., Hodge decomposition - A method for solving boundary value problems, Lecture Notes in Math., Vol. 1607, Springer, Berlin, 1995.
- Shi Y., Tam L.-F., Positive mass theorem and the boundary behaviors of compact manifolds with nonnegative scalar curvature, J. Differential Geom. 62 (2002), 79-125, arXiv:math.DG/0301047.
- Wang M.-T., Yau S.-T., Isometric embeddings into the Minkowski space and new quasi-local mass, Comm. Math. Phys. 288 (2009), 919-942, arXiv:0805.1370.
|
|