|
SIGMA 19 (2023), 085, 33 pages arXiv:2210.08712
https://doi.org/10.3842/SIGMA.2023.085
Diagonal Tau-Functions of 2D Toda Lattice Hierarchy, Connected $(n,m)$-Point Functions, and Double Hurwitz Numbers
Zhiyuan Wang a and Chenglang Yang b
a) School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan, P.R. China
b) Hua Loo-Keng Center for Mathematical Sciences, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, P.R. China
Received December 18, 2022, in final form October 21, 2023; Published online November 04, 2023
Abstract
We derive an explicit formula for the connected $(n,m)$-point functions associated to an arbitrary diagonal tau-function $\tau_f(\boldsymbol{t}^+,\boldsymbol{t}^-)$ of the 2d Toda lattice hierarchy using fermionic computations and the boson-fermion correspondence. Then for fixed $\boldsymbol{t}^-$, we compute the KP-affine coordinates of $\tau_f(\boldsymbol{t}^+,\boldsymbol{t}^-)$. As applications, we present a unified approach to compute various types of connected double Hurwitz numbers, including the ordinary double Hurwitz numbers, the double Hurwitz numbers with completed $r$-cycles, and the mixed double Hurwitz numbers. We also apply this method to the computation of the stationary Gromov-Witten invariants of $\mathbb P^1$ relative to two points.
Key words: 2d Toda lattice hierarchy; connected $(n,m)$-point functions; boson-fermion correspondence; double Hurwitz numbers.
pdf (633 kb)
tex (38 kb)
References
- Balogh F., Yang D., Geometric interpretation of Zhou's explicit formula for the Witten-Kontsevich tau function, Lett. Math. Phys. 107 (2017), 1837-1857, arXiv:1412.4419.
- Borot G., Eynard B., Mulase M., Safnuk B., A matrix model for simple Hurwitz numbers, and topological recursion, J. Geom. Phys. 61 (2011), 522-540, arXiv:0906.1206.
- Bouchard V., Mariño M., Hurwitz numbers, matrix models and enumerative geometry, in From Hodge Theory to Integrability and TQFT $tt^*$-Geometry, Proc. Sympos. Pure Math., Vol. 78, American Mathematical Society, Providence, RI, 2008, 263-283, arXiv:0709.1458.
- Bychkov B., Dunin-Barkowski P., Kazarian M., Shadrin S., Explicit closed algebraic formulas for Orlov-Scherbin $n$-point functions, J. 'Ec. Polytech. Math. 9 (2022), 1121-1158, arXiv:2008.13123.
- Carrell S.R., Diagonal solutions to the 2-Toda hierarchy, Math. Res. Lett. 22 (2015), 439-465, arXiv:1109.1451.
- Date E., Jimbo M., Kashiwara M., Miwa T., Transformation groups for soliton equations. IV. A new hierarchy of soliton equations of KP-type, Phys. D 4 (1982), 343-365.
- Deligne P., Mumford D., The irreducibility of the space of curves of given genus, Publ. Math. Inst. Hautes 'Etudes Sci. (1969), 75-109.
- Dijkgraaf R., Mirror symmetry and elliptic curves, in The Moduli Space of Curves (Texel Island, 1994), Progr. Math., Vol. 129, Birkhäuser, Boston, MA, 1995, 149-163.
- Ekedahl T., Lando S., Shapiro M., Vainshtein A., On Hurwitz numbers and Hodge integrals, C. R. Acad. Sci. Paris Sér. I Math. 328 (1999), 1175-1180, arXiv:math.AG/9902104.
- Ekedahl T., Lando S., Shapiro M., Vainshtein A., Hurwitz numbers and intersections on moduli spaces of curves, Invent. Math. 146 (2001), 297-327, arXiv:math.AG/0004096.
- Eskin A., Okounkov A., Pandharipande R., The theta characteristic of a branched covering, Adv. Math. 217 (2008), 873-888, arXiv:math.AG/0312186.
- Fulton W., Harris J., Representation theory. A first course, Grad. Texts in Math., Vol. 129, Springer, New York, 1991.
- Giacchetto A., Kramer R., Lewański D., A new spin on Hurwitz theory and ELSV via theta characteristics, arXiv:2104.05697.
- Goulden I.P., Guay-Paquet M., Novak J., Monotone Hurwitz numbers and the HCIZ integral, Ann. Math. Blaise Pascal 21 (2014), 71-89, arXiv:1107.1015.
- Goulden I.P., Guay-Paquet M., Novak J., Toda equations and piecewise polynomiality for mixed double Hurwitz numbers, SIGMA 12 (2016), 040, 10 pages, arXiv:1307.2137.
- Goulden I.P., Jackson D.M., Vakil R., Towards the geometry of double Hurwitz numbers, Adv. Math. 198 (2005), 43-92, arXiv:math.AG/0309440.
- Graber T., Vakil R., Hodge integrals and Hurwitz numbers via virtual localization, Compos. Math. 135 (2003), 25-36, arXiv:math.AG/0003028.
- Gukov S., Suł kowski P., A-polynomial, B-model, and quantization, J. High Energy Phys. 2012 (2012), no. 2, 070, 56 pages, arXiv:1108.0002.
- Harnad J., Balogh F., Tau functions and their applications, Cambridge Monogr. Math. Phys., Cambridge University Press, Cambridge, 2021.
- Hurwitz A., Über die Anzahl der Riemann'schen Flächen mit gegebenen Verzweigungspunkten, Math. Ann. 55 (1901), 53-66.
- Ji C., Wang Z., Yang C., Kac-Schwarz operators of type $B$, quantum spectral curves, and spin Hurwitz numbers, J. Geom. Phys. 189 (2023), 104831, 20 pages, arXiv:2211.08687.
- Jimbo M., Miwa T., Solitons and infinite-dimensional Lie algebras, Publ. Res. Inst. Math. Sci. 19 (1983), 943-1001.
- Johnson P., Double Hurwitz numbers via the infinite wedge, Trans. Amer. Math. Soc. 367 (2015), 6415-6440, arXiv:1008.3266.
- Kac V.G., Infinite-dimensional Lie algebras, 3rd ed., Cambridge University Press, Cambridge, 1990.
- Kac V.G., van de Leur J.W., The $n$-component KP hierarchy and representation theory, J. Math. Phys. 44 (2003), 3245-3293, arXiv:hep-th/9308137.
- Knudsen F.F., The projectivity of the moduli space of stable curves. II. The stacks $M_{g,n}$, Math. Scand. 52 (1983), 161-199.
- Kontsevich M., Intersection theory on the moduli space of curves and the matrix Airy function, Comm. Math. Phys. 147 (1992), 1-23.
- Macdonald I.G., Symmetric functions and Hall polynomials, 2nd ed., Oxford Math. Monogr., The Clarendon Press, New York, 1995.
- Miwa T., Jimbo M., Date E., Solitons. Differential equations, symmetries and infinite-dimensional algebras, Cambridge Tracts in Math., Vol. 135, Cambridge University Press, Cambridge, 2000.
- Okounkov A., Toda equations for Hurwitz numbers, Math. Res. Lett. 7 (2000), 447-453, arXiv:math.AG/0004128.
- Okounkov A., Infinite wedge and random partitions, Selecta Math. (N.S.) 7 (2001), 57-81, arXiv:math.RT/9907127.
- Okounkov A., Pandharipande R., The equivariant Gromov-Witten theory of ${P}^1$, Ann. of Math. 163 (2006), 561-605, arXiv:math.AG/0207233.
- Okounkov A., Pandharipande R., Gromov-Witten theory, Hurwitz theory, and completed cycles, Ann. of Math. 163 (2006), 517-560, arXiv:math.AG/0204305.
- Pandharipande R., The Toda equations and the Gromov-Witten theory of the Riemann sphere, Lett. Math. Phys. 53 (2000), 59-74, arXiv:math.AG/9912166.
- Rota G.C., On the foundations of combinatorial theory. I. Theory of Möbius functions, Z. Wahrscheinlichkeitstheor. Verw. Geb. 2 (1964), 340-368.
- Sato M., Sato Y., Soliton equations as dynamical systems on infinite-dimensional Grassmann manifold, in Nonlinear Partial Differential Equations in Applied Science (Tokyo, 1982), North-Holland Math. Stud., Vol. 81, North-Holland, Amsterdam, 1983, 259-271.
- Segal G., Wilson G., Loop groups and equations of KdV type, Publ. Math. Inst. Hautes Études Sci. 61 (1985), 5-65.
- Shadrin S., Spitz L., Zvonkine D., On double Hurwitz numbers with completed cycles, J. Lond. Math. Soc. 86 (2012), 407-432, arXiv:1103.3120.
- Takebe T., Toda lattice hierarchy and conservation laws, Comm. Math. Phys. 129 (1990), 281-318.
- Ueno K., Takasaki K., Toda lattice hierarchy, in Group Representations and Systems of Differential Equations (Tokyo, 1982), Adv. Stud. Pure Math., Vol. 4, North-Holland, Amsterdam, 1984, 1-95.
- Wang Z., Yang C., BKP hierarchy, affine coordinates, and a formula for connected bosonic $n$-point functions, Lett. Math. Phys. 112 (2022), 62, 42 pages, arXiv:2201.08178.
- Wang Z., Yang C., Connected $(n,m)$-point functions of diagonal 2-BKP tau-functions and spin double Hurwitz numbers, J. Math. Phys. 64 (2023), 041702, 17 pages, arXiv:2210.09576.
- Wang Z., Yang C., Zhang Q., BKP-affine coordinates and emergent geometry of generalized Brézin-Gross-Witten tau-functions, arXiv:2301.01131.
- Witten E., Two-dimensional gravity and intersection theory on moduli space, in Surveys in Differential Geometry (Cambridge, MA, 1990), Lehigh University, Bethlehem, PA, 1991, 243-310.
- Zhou J., Hodge integrals, Hurwitz numbers, and symmetric groups, arXiv:math.AG/0308024.
- Zhou J., Explicit formula for Witten-Kontsevich tau-function, arXiv:1306.5429.
- Zhou J., Emergent geometry and mirror symmetry of a point, arXiv:1507.01679.
|
|