Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 19 (2023), 085, 33 pages      arXiv:2210.08712      https://doi.org/10.3842/SIGMA.2023.085

Diagonal Tau-Functions of 2D Toda Lattice Hierarchy, Connected $(n,m)$-Point Functions, and Double Hurwitz Numbers

Zhiyuan Wang a and Chenglang Yang b
a) School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan, P.R. China
b) Hua Loo-Keng Center for Mathematical Sciences, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, P.R. China

Received December 18, 2022, in final form October 21, 2023; Published online November 04, 2023

Abstract
We derive an explicit formula for the connected $(n,m)$-point functions associated to an arbitrary diagonal tau-function $\tau_f(\boldsymbol{t}^+,\boldsymbol{t}^-)$ of the 2d Toda lattice hierarchy using fermionic computations and the boson-fermion correspondence. Then for fixed $\boldsymbol{t}^-$, we compute the KP-affine coordinates of $\tau_f(\boldsymbol{t}^+,\boldsymbol{t}^-)$. As applications, we present a unified approach to compute various types of connected double Hurwitz numbers, including the ordinary double Hurwitz numbers, the double Hurwitz numbers with completed $r$-cycles, and the mixed double Hurwitz numbers. We also apply this method to the computation of the stationary Gromov-Witten invariants of $\mathbb P^1$ relative to two points.

Key words: 2d Toda lattice hierarchy; connected $(n,m)$-point functions; boson-fermion correspondence; double Hurwitz numbers.

pdf (633 kb)   tex (38 kb)  

References

  1. Balogh F., Yang D., Geometric interpretation of Zhou's explicit formula for the Witten-Kontsevich tau function, Lett. Math. Phys. 107 (2017), 1837-1857, arXiv:1412.4419.
  2. Borot G., Eynard B., Mulase M., Safnuk B., A matrix model for simple Hurwitz numbers, and topological recursion, J. Geom. Phys. 61 (2011), 522-540, arXiv:0906.1206.
  3. Bouchard V., Mariño M., Hurwitz numbers, matrix models and enumerative geometry, in From Hodge Theory to Integrability and TQFT $tt^*$-Geometry, Proc. Sympos. Pure Math., Vol. 78, American Mathematical Society, Providence, RI, 2008, 263-283, arXiv:0709.1458.
  4. Bychkov B., Dunin-Barkowski P., Kazarian M., Shadrin S., Explicit closed algebraic formulas for Orlov-Scherbin $n$-point functions, J. 'Ec. Polytech. Math. 9 (2022), 1121-1158, arXiv:2008.13123.
  5. Carrell S.R., Diagonal solutions to the 2-Toda hierarchy, Math. Res. Lett. 22 (2015), 439-465, arXiv:1109.1451.
  6. Date E., Jimbo M., Kashiwara M., Miwa T., Transformation groups for soliton equations. IV. A new hierarchy of soliton equations of KP-type, Phys. D 4 (1982), 343-365.
  7. Deligne P., Mumford D., The irreducibility of the space of curves of given genus, Publ. Math. Inst. Hautes 'Etudes Sci. (1969), 75-109.
  8. Dijkgraaf R., Mirror symmetry and elliptic curves, in The Moduli Space of Curves (Texel Island, 1994), Progr. Math., Vol. 129, Birkhäuser, Boston, MA, 1995, 149-163.
  9. Ekedahl T., Lando S., Shapiro M., Vainshtein A., On Hurwitz numbers and Hodge integrals, C. R. Acad. Sci. Paris Sér. I Math. 328 (1999), 1175-1180, arXiv:math.AG/9902104.
  10. Ekedahl T., Lando S., Shapiro M., Vainshtein A., Hurwitz numbers and intersections on moduli spaces of curves, Invent. Math. 146 (2001), 297-327, arXiv:math.AG/0004096.
  11. Eskin A., Okounkov A., Pandharipande R., The theta characteristic of a branched covering, Adv. Math. 217 (2008), 873-888, arXiv:math.AG/0312186.
  12. Fulton W., Harris J., Representation theory. A first course, Grad. Texts in Math., Vol. 129, Springer, New York, 1991.
  13. Giacchetto A., Kramer R., Lewański D., A new spin on Hurwitz theory and ELSV via theta characteristics, arXiv:2104.05697.
  14. Goulden I.P., Guay-Paquet M., Novak J., Monotone Hurwitz numbers and the HCIZ integral, Ann. Math. Blaise Pascal 21 (2014), 71-89, arXiv:1107.1015.
  15. Goulden I.P., Guay-Paquet M., Novak J., Toda equations and piecewise polynomiality for mixed double Hurwitz numbers, SIGMA 12 (2016), 040, 10 pages, arXiv:1307.2137.
  16. Goulden I.P., Jackson D.M., Vakil R., Towards the geometry of double Hurwitz numbers, Adv. Math. 198 (2005), 43-92, arXiv:math.AG/0309440.
  17. Graber T., Vakil R., Hodge integrals and Hurwitz numbers via virtual localization, Compos. Math. 135 (2003), 25-36, arXiv:math.AG/0003028.
  18. Gukov S., Suł kowski P., A-polynomial, B-model, and quantization, J. High Energy Phys. 2012 (2012), no. 2, 070, 56 pages, arXiv:1108.0002.
  19. Harnad J., Balogh F., Tau functions and their applications, Cambridge Monogr. Math. Phys., Cambridge University Press, Cambridge, 2021.
  20. Hurwitz A., Über die Anzahl der Riemann'schen Flächen mit gegebenen Verzweigungspunkten, Math. Ann. 55 (1901), 53-66.
  21. Ji C., Wang Z., Yang C., Kac-Schwarz operators of type $B$, quantum spectral curves, and spin Hurwitz numbers, J. Geom. Phys. 189 (2023), 104831, 20 pages, arXiv:2211.08687.
  22. Jimbo M., Miwa T., Solitons and infinite-dimensional Lie algebras, Publ. Res. Inst. Math. Sci. 19 (1983), 943-1001.
  23. Johnson P., Double Hurwitz numbers via the infinite wedge, Trans. Amer. Math. Soc. 367 (2015), 6415-6440, arXiv:1008.3266.
  24. Kac V.G., Infinite-dimensional Lie algebras, 3rd ed., Cambridge University Press, Cambridge, 1990.
  25. Kac V.G., van de Leur J.W., The $n$-component KP hierarchy and representation theory, J. Math. Phys. 44 (2003), 3245-3293, arXiv:hep-th/9308137.
  26. Knudsen F.F., The projectivity of the moduli space of stable curves. II. The stacks $M_{g,n}$, Math. Scand. 52 (1983), 161-199.
  27. Kontsevich M., Intersection theory on the moduli space of curves and the matrix Airy function, Comm. Math. Phys. 147 (1992), 1-23.
  28. Macdonald I.G., Symmetric functions and Hall polynomials, 2nd ed., Oxford Math. Monogr., The Clarendon Press, New York, 1995.
  29. Miwa T., Jimbo M., Date E., Solitons. Differential equations, symmetries and infinite-dimensional algebras, Cambridge Tracts in Math., Vol. 135, Cambridge University Press, Cambridge, 2000.
  30. Okounkov A., Toda equations for Hurwitz numbers, Math. Res. Lett. 7 (2000), 447-453, arXiv:math.AG/0004128.
  31. Okounkov A., Infinite wedge and random partitions, Selecta Math. (N.S.) 7 (2001), 57-81, arXiv:math.RT/9907127.
  32. Okounkov A., Pandharipande R., The equivariant Gromov-Witten theory of ${P}^1$, Ann. of Math. 163 (2006), 561-605, arXiv:math.AG/0207233.
  33. Okounkov A., Pandharipande R., Gromov-Witten theory, Hurwitz theory, and completed cycles, Ann. of Math. 163 (2006), 517-560, arXiv:math.AG/0204305.
  34. Pandharipande R., The Toda equations and the Gromov-Witten theory of the Riemann sphere, Lett. Math. Phys. 53 (2000), 59-74, arXiv:math.AG/9912166.
  35. Rota G.C., On the foundations of combinatorial theory. I. Theory of Möbius functions, Z. Wahrscheinlichkeitstheor. Verw. Geb. 2 (1964), 340-368.
  36. Sato M., Sato Y., Soliton equations as dynamical systems on infinite-dimensional Grassmann manifold, in Nonlinear Partial Differential Equations in Applied Science (Tokyo, 1982), North-Holland Math. Stud., Vol. 81, North-Holland, Amsterdam, 1983, 259-271.
  37. Segal G., Wilson G., Loop groups and equations of KdV type, Publ. Math. Inst. Hautes Études Sci. 61 (1985), 5-65.
  38. Shadrin S., Spitz L., Zvonkine D., On double Hurwitz numbers with completed cycles, J. Lond. Math. Soc. 86 (2012), 407-432, arXiv:1103.3120.
  39. Takebe T., Toda lattice hierarchy and conservation laws, Comm. Math. Phys. 129 (1990), 281-318.
  40. Ueno K., Takasaki K., Toda lattice hierarchy, in Group Representations and Systems of Differential Equations (Tokyo, 1982), Adv. Stud. Pure Math., Vol. 4, North-Holland, Amsterdam, 1984, 1-95.
  41. Wang Z., Yang C., BKP hierarchy, affine coordinates, and a formula for connected bosonic $n$-point functions, Lett. Math. Phys. 112 (2022), 62, 42 pages, arXiv:2201.08178.
  42. Wang Z., Yang C., Connected $(n,m)$-point functions of diagonal 2-BKP tau-functions and spin double Hurwitz numbers, J. Math. Phys. 64 (2023), 041702, 17 pages, arXiv:2210.09576.
  43. Wang Z., Yang C., Zhang Q., BKP-affine coordinates and emergent geometry of generalized Brézin-Gross-Witten tau-functions, arXiv:2301.01131.
  44. Witten E., Two-dimensional gravity and intersection theory on moduli space, in Surveys in Differential Geometry (Cambridge, MA, 1990), Lehigh University, Bethlehem, PA, 1991, 243-310.
  45. Zhou J., Hodge integrals, Hurwitz numbers, and symmetric groups, arXiv:math.AG/0308024.
  46. Zhou J., Explicit formula for Witten-Kontsevich tau-function, arXiv:1306.5429.
  47. Zhou J., Emergent geometry and mirror symmetry of a point, arXiv:1507.01679.

Previous article  Next article  Contents of Volume 19 (2023)