|
SIGMA 19 (2023), 077, 36 pages arXiv:2303.17677
https://doi.org/10.3842/SIGMA.2023.077
The Higher-Rank Askey-Wilson Algebra and Its Braid Group Automorphisms
Nicolas Crampé a, Luc Frappat b, Loïc Poulain d'Andecy c and Eric Ragoucy b
a) Institut Denis-Poisson CNRS/UMR 7013 - Université de Tours - Université d'Orléans, Parc de Grandmont, 37200 Tours, France
b) Laboratoire d'Annecy-le-Vieux de Physique Théorique LAPTh, Université Savoie Mont Blanc, CNRS, F-74000 Annecy, France
c) Laboratoire de mathématiques de Reims UMR 9008, Université de Reims Champagne-Ardenne, Moulin de la Housse BP 1039, 51100 Reims, France
Received April 12, 2023, in final form October 10, 2023; Published online October 18, 2023
Abstract
We propose a definition by generators and relations of the rank $n-2$ Askey-Wilson algebra $\mathfrak{aw}(n)$ for any integer $n$, generalising the known presentation for the usual case $n=3$. The generators are indexed by connected subsets of $\{1,\dots,n\}$ and the simple and rather small set of defining relations is directly inspired from the known case of $n=3$. Our first main result is to prove the existence of automorphisms of $\mathfrak{aw}(n)$ satisfying the relations of the braid group on $n+1$ strands. We also show the existence of coproduct maps relating the algebras for different values of $n$. An immediate consequence of our approach is that the Askey-Wilson algebra defined here surjects onto the algebra generated by the intermediate Casimir elements in the $n$-fold tensor product of the quantum group ${\rm U}_q(\mathfrak{sl}_2)$ or, equivalently, onto the Kauffman bracket skein algebra of the $(n+1)$-punctured sphere. We also obtain a family of central elements of the Askey-Wilson algebras which are shown, as a direct by-product of our construction, to be sent to $0$ in the realisation in the $n$-fold tensor product of ${\rm U}_q(\mathfrak{sl}_2)$, thereby producing a large number of relations for the algebra generated by the intermediate Casimir elements.
Key words: Askey-Wilson algebra; braid group.
pdf (684 kb)
tex (43 kb)
References
- Bannai E., Ito T., Algebraic combinatorics. I. Association schemes, The Benjamin/Cummings Publishing Co., Inc., Menlo Park, CA, 1984.
- Chen H., On skein algebras of planar surfaces, arXiv:2206.07856.
- Cooke J., Lacabanne A., Higher rank Askey-Wilson algebras as skein algebras, arXiv:2205.04414.
- Crampé N., Frappat L., Gaboriaud J., Poulain d'Andecy L., Ragoucy E., Vinet L., The Askey-Wilson algebra and its avatars, J. Phys. A 54 (2021), 063001, 32 pages, arXiv:2009.14815.
- Crampé N., Frappat L., Ragoucy E., Representations of the rank two Racah algebra and orthogonal multivariate polynomials, Linear Algebra Appl. 664 (2023), 165-215, arXiv:2206.01031.
- Crampé N., Gaboriaud J., Poulain d'Andecy L., Vinet L., Racah algebras, the centralizer $Z_n(\mathfrak{sl}_2)$ and its Hilbert-Poincaré series, Ann. Henri Poincaré 23 (2022), 2657-2682, arXiv:2105.01086.
- Crampé N., Gaboriaud J., Vinet L., Zaimi M., Revisiting the Askey-Wilson algebra with the universal $R$-matrix of ${\rm U}_q(\mathfrak{sl}_2)$, J. Phys. A 53 (2020), 05LT01, 10 pages, arXiv:1908.04806.
- Crampé N., Poulain d'Andecy L., Vinet L., Zaimi M., Askey-Wilson braid algebra and centralizer of ${\rm U}_q(\mathfrak{sl}_2)$, Ann. Henri Poincaré 24 (2023), 1897-1922, arXiv:2206.11150.
- Crampé N., Vinet L., Zaimi M., Temperley-Lieb, Birman-Murakami-Wenzl and Askey-Wilson algebras and other centralizers of ${\rm U}_q(\mathfrak{sl}_2)$, Ann. Henri Poincaré 22 (2021), 3499-3528, arXiv:2008.04905.
- De Bie H., De Clercq H., The $q$-Bannai-Ito algebra and multivariate $(-q)$-Racah and Bannai-Ito polynomials, J. Lond. Math. Soc. 103 (2021), 71-126, arXiv:1902.07883.
- De Bie H., De Clercq H., van de Vijver W., The higher rank $q$-deformed Bannai-Ito and Askey-Wilson algebra, Comm. Math. Phys. 374 (2020), 277-316, arXiv:1805.06642.
- De Clercq H., Higher rank relations for the Askey-Wilson and $q$-Bannai-Ito algebra, SIGMA 15 (2019), 099, 32 pages, arXiv:1908.11654.
- Genest V.X., Iliev P., Vinet L., Coupling coefficients of $\mathfrak{su}_q(1,1)$ and multivariate $q$-Racah polynomials, Nuclear Phys. B 927 (2018), 97-123, arXiv:1702.04626.
- Genest V.X., Vinet L., Zhedanov A., Superintegrability in two dimensions and the Racah-Wilson algebra, Lett. Math. Phys. 104 (2014), 931-952, arXiv:1307.5539.
- Geronimo J.S., Iliev P., Multivariable Askey-Wilson function and bispectrality, Ramanujan J. 24 (2011), 273-287.
- Granovskii Y.I., Zhedanov A.S., Nature of the symmetry group of the $6j$-symbol, J. Exp. Theor. Phys 67 (1988), 1982-1985.
- Granovskii Y.I., Zhedanov A.S., Hidden symmetry of the Racah and Clebsch-Gordan problems for the quantum algebra $\mathfrak{sl}_q(2)$, J. Group Theoret. Methods Phys. 1 (1993), 161-171, arXiv:hep-th/9304138.
- Groenevelt W., A quantum algebra approach to multivariate Askey-Wilson polynomials, Int. Math. Res. Not. 2021 (2021), 3224-3266, arXiv:1809.04327.
- Groenevelt W., Wagenaar C., An Askey-Wilson algebra of rank 2, SIGMA 19 (2023), 008, 35 pages, arXiv:2206.03986.
- Huang H.-W., Finite-dimensional irreducible modules of the universal Askey-Wilson algebra, Comm. Math. Phys. 340 (2015), 959-984, arXiv:1210.1740.
- Huang H.-W., An embedding of the universal Askey-Wilson algebra into ${\rm U}_q(\mathfrak{sl}_2)\otimes {\rm U}_q(\mathfrak{sl}_2)\otimes {\rm U}_q(\mathfrak{sl}_2)$, Nuclear Phys. B 922 (2017), 401-434, arXiv:1611.02130.
- Iliev P., Bispectral commuting difference operators for multivariable Askey-Wilson polynomials, Trans. Amer. Math. Soc. 363 (2011), 1577-1598, arXiv:0801.4939.
- Kalnins E.G., Kress J.M., Miller Jr. W., Second-order superintegrable systems in conformally flat spaces. I. Two-dimensional classical structure theory, J. Math. Phys. 46 (2005), 053509, 28 pages.
- Kassel C., Turaev V., Braid groups, Grad. Texts in Math., Vol. 247, Springer, New York, 2008.
- Leonard D.A., Orthogonal polynomials, duality and association schemes, SIAM J. Math. Anal. 13 (1982), 656-663.
- Post S., Models of quadratic algebras generated by superintegrable systems in 2D, SIGMA 7 (2011), 036, 20 pages, arXiv:1104.0734.
- Post S., Walter A., A higher rank extension of the Askey-Wilson algebra, arXiv:1705.01860.
- Terwilliger P., The universal Askey-Wilson algebra, SIGMA 7 (2011), 069, 24 pages, arXiv:1104.2813.
- Terwilliger P., Vidunas R., Leonard pairs and the Askey-Wilson relations, J. Algebra Appl. 3 (2004), 411-426, arXiv:math.QA/0305356.
- Vermaseren J.A.M., New features of FORM, source: https://github.com/vermaseren/form, arXiv:math-ph/0010025.
- Zhedanov A.S., ''Hidden symmetry'' of Askey-Wilson polynomials, Theoret. and Math. Phys. 89 (1991), 1146-1157.
|
|