|
SIGMA 19 (2023), 070, 29 pages arXiv:2301.12385
https://doi.org/10.3842/SIGMA.2023.070
Contribution to the Special Issue on Differential Geometry Inspired by Mathematical Physics in honor of Jean-Pierre Bourguignon for his 75th birthday
Symplectic Double Extensions for Restricted Quasi-Frobenius Lie (Super)Algebras
Sofiane Bouarroudj a, Quentin Ehret b and Yoshiaki Maeda c
a) Division of Science and Mathematics, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
b) University of Haute-Alsace, IRIMAS UR 7499, F-68100 Mulhouse, France
c) Tohoku Forum for Creativity, Tohoku University, 2-1-1, Katahira, Aoba-ku, Sendai, Japan
Received January 31, 2023, in final form September 11, 2023; Published online September 28, 2023
Abstract
In this paper, we present a method of symplectic double extensions for restricted quasi-Frobenius Lie superalgebras. Certain cocycles in the restricted cohomology represent obstructions to symplectic double extension, which we fully describe. We found a necessary condition for which a restricted quasi-Frobenius Lie superalgebras is a symplectic double extension of a smaller restricted Lie superalgebra. The constructions are illustrated with a few examples.
Key words: restricted Lie (super)algebra; quasi-Frobenius Lie (super)algebra; double extension.
pdf (572 kb)
tex (32 kb)
References
- Ait Aissa T., Mansouri M.W., Symplectic Novikov Lie algebras, Comm. Algebra 50 (2022), 2921-2933, arXiv:2106.15165.
- Backhouse N., A classification of four-dimensional Lie superalgebras, J. Math. Phys. 19 (1978), 2400-2402.
- Bajo I., Benayadi S., Abelian para-Kähler structures on Lie algebras, Differential Geom. Appl. 29 (2011), 160-173, arXiv:1206.3464.
- Baues O., Cortés V., Symplectic Lie groups: symplectic reduction, Lagrangian extensions, and existence of Lagrangian normal subgroups, Astérisque 379 (2016), vi+90 pages.
- Bazzoni G., Freibert M., Latorre A., Meinke B., Complex symplectic structures on Lie algebras, J. Pure Appl. Algebra 225 (2021), 106585, 28 pages, arXiv:1811.05969.
- Benamor H., Benayadi S., Double extension of quadratic Lie superalgebras, Comm. Algebra 27 (1999), 67-88.
- Benayadi S., Socle and some invariants of quadratic Lie superalgebras, J. Algebra 261 (2003), 245-291.
- Benayadi S., Bouarroudj S., Double extensions of Lie superalgebras in characteristic 2 with nondegenerate invariant supersymmetric bilinear form, J. Algebra 510 (2018), 141-179, arXiv:1707.00970.
- Benayadi S., Bouarroudj S., Manin triples and non-degenerate anti-symmetric bilinear forms on Lie superalgebras in characteristic 2, J. Algebra 614 (2023), 199-250, arXiv:2110.05141.
- Benayadi S., Bouarroudj S., Hajli M., Double extensions of restricted Lie (super)algebras, Arnold Math. J. 6 (2020), 231-269, arXiv:1810.03086.
- Bouarroudj S., Grozman P., Leites D., Deformations of symmetric simple modular Lie (super)algebras, SIGMA 19 (2023), 031, 66 pages, arXiv:0807.3054.
- Bouarroudj S., Krutov A., Leites D., Shchepochkina I., Non-degenerate invariant (super)symmetric bilinear forms on simple Lie (super)algebras, Algebr. Represent. Theory 21 (2018), 897-941, arXiv:1806.05505.
- Bouarroudj S., Lebedev A., Leites D., Shchepochkina I., Classification of simple Lie superalgebras in characteristic 2, Int. Math. Res. Not. 2023 (2023), 54-94, arXiv:1407.1695.
- Bouarroudj S., Maeda Y., Double and Lagrangian extensions for quasi-Frobenius Lie superalgebras, J. Algebra Appl to appear, arXiv:2111.00838.
- Buarrudzh S., Krutov A.O., Lebedev A.V., Leites D.A., Shchepochkina I.M., Restricted simple Lie (super)algebras in characteristic 3, Funct. Anal. Appl. 52 (2018), 49-52, arXiv:1809.08582.
- Dardié J.-M., Médina A., Algèbres de Lie kählériennes et double extension, J. Algebra 185 (1996), 774-795.
- Dardié J.-M., Medina A., Double extension symplectique d'un groupe de Lie symplectique, Adv. Math. 117 (1996), 208-227.
- Darijani I., Usefi H., The classification of 5-dimensional $p$-nilpotent restricted Lie algebras over perfect fields, I, J. Algebra 464 (2016), 97-140, arXiv:1412.8377.
- del Barco V., Symplectic structures on free nilpotent Lie algebras, Proc. Japan Acad. Ser. A Math. Sci. 95 (2019), 88-90, arXiv:1111.3280.
- Evans T.J., Fialowski A., Cohomology of restricted filiform Lie algebras ${\mathfrak{m}}_2^\lambda(p)$, SIGMA 15 (2019), 095, 11 pages, arXiv:1901.07532.
- Evans T.J., Fialowski A., Central extensions of restricted affine nilpotent Lie algebras $n_+(A^{(1)}_1)(p)$, J. Lie Theory 33 (2023), 195-215, arXiv:2208.03783.
- Evans T.J., Fuchs D., A complex for the cohomology of restricted Lie algebras, J. Fixed Point Theory Appl. 3 (2008), 159-179.
- Farnsteiner R., Note on Frobenius extensions and restricted Lie superalgebras, J. Pure Appl. Algebra 108 (1996), 241-256.
- Favre G., Santharoubane L.J., Symmetric, invariant, nondegenerate bilinear form on a Lie algebra, J. Algebra 105 (1987), 451-464.
- Feldvoss J., Siciliano S., Weigel T., Outer restricted derivations of nilpotent restricted Lie algebras, Proc. Amer. Math. Soc. 141 (2013), 171-179, arXiv:1102.2629.
- Fischer M., Symplectic Lie algebras with degenerate center, J. Algebra 521 (2019), 257-283, arXiv:1609.03314.
- Gómez J.R., Khakimdjanov Yu., Navarro R.M., Some problems concerning to nilpotent Lie superalgebras, J. Geom. Phys. 51 (2004), 472-485.
- Goze M., Remm E., Contact and Frobeniusian forms on Lie groups, Differential Geom. Appl. 35 (2014), 74-94.
- Hochschild G., Cohomology of restricted Lie algebras, Amer. J. Math. 76 (1954), 555-580.
- Jacobson N., Restricted Lie algebras of characteristic $p$, Trans. Amer. Math. Soc. 50 (1941), 15-25.
- Maletesta N., Siciliano S., Five-dimensional $p$-nilpotent restricted Lie algebras over algebraically closed fields of characteristic $p\geq3$, J. Algebra 634 (2023), 755-789.
- May J.P., The cohomology of restricted Lie algebras and of Hopf algebras, J. Algebra 3 (1966), 123-146.
- Medina A., Revoy P., Algèbres de Lie et produit scalaire invariant, Ann. Sci. École Norm. Sup. (4) 18 (1985), 553-561.
- Medina A., Revoy P., Groupes de Lie à structure symplectique invariante, in Symplectic Geometry, Droupoids, and Integrable Systems (Berkeley, CA, 1989), Math. Sci. Res. Inst. Publ., Vol. 20, Springer, New York, 1991, 247-266.
- Ooms A.I., On Frobenius Lie algebras, Comm. Algebra 8 (1980), 13-52.
- Petrogradski V.M., Identities in the enveloping algebras for modular Lie superalgebras, J. Algebra 145 (1992), 1-21.
- Shu B., Zhang C., Restricted representations of the Witt superalgebras, J. Algebra 324 (2010), 652-672.
- Strade H., Simple Lie algebras over fields of positive characteristic. I. Structure theory, De Gruyter Expo. Math., Vol. 38, De Gruyter, Berlin, 2004.
- Strade H., Simple Lie algebras over fields of positive characteristic. III. Completion of the classification, De Gruyter Expo. Math., Vol. 57, De Gruyter, Berlin, 2013.
- Strade H., Farnsteiner R., Modular Lie algebras and their representations, Monogr. Textbooks Pure Appl. Math., Vol. 116, Marcel Dekker, Inc., New York, 1988.
- Usefi H., Lie identities on enveloping algebras of restricted Lie superalgebras, J. Algebra 393 (2013), 120-131.
- Yao Y.-F., On representations of restricted Lie superalgebras,Czechoslovak Math. J. 64 (2014), 845-856.
- Yuan J.X., Chen L.Y., Cao Y., Restricted cohomology of restricted Lie superalgebras, Acta Math. Sin. (Engl. Ser.) 38 (2022), 2115-2130, arXiv:2102.10045.
- Zhang C., On the simple modules for the restricted Lie superalgebra ${\mathfrak{sl}}(n|1)$, J. Pure Appl. Algebra 213 (2009), 756-765.
|
|