Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 19 (2023), 067, 23 pages      arXiv:2212.01695      https://doi.org/10.3842/SIGMA.2023.067

Real Slices of ${\rm SL}(r,\mathbb{C})$-Opers

Indranil Biswas a, Sebastian Heller b and Laura P. Schaposnik c
a) Department of Mathematics, Shiv Nadar University, NH91, Tehsil Dadri, Greater Noida, Uttar Pradesh 201314, India
b) Beijing Institute of Mathematical Sciences and Applications, Beijing 101408, P.R. China
c) Department of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago, 851 S Morgan St, Chicago, IL 60607, USA

Received April 12, 2023, in final form September 05, 2023; Published online September 16, 2023

Abstract
Through the action of an anti-holomorphic involution $\sigma$ (a real structure) on a Riemann surface $X$, we consider the induced actions on ${\rm SL}(r,\mathbb{C})$-opers and study the real slices fixed by such actions. By constructing this involution for different descriptions of the space of ${\rm SL}(r,\mathbb{C})$-opers, we are able to give a natural parametrization of the fixed point locus via differentials on the Riemann surface, which in turn allows us to study their geometric properties.

Key words: opers; real structure; differential operator; anti-holomorphic involution; real slice.

pdf (471 kb)   tex (26 kb)  

References

  1. Atiyah M.F., Riemann surfaces and spin structures, Ann. Sci. 'Ecole Norm. Sup. (4) 4 (1971), 47-62.
  2. Atiyah M.F., Bott R., The Yang-Mills equations over Riemann surfaces, Philos. Trans. Roy. Soc. London Ser. A 308 (1983), 523-615.
  3. Baraglia D., Schaposnik L.P., Higgs bundles and $(A,B,A)$-branes, Comm. Math. Phys. 331 (2014), 1271-1300, arXiv:1305.4638.
  4. Baraglia D., Schaposnik L.P., Real structures on moduli spaces of Higgs bundles, Adv. Theor. Math. Phys. 20 (2016), 525-551, arXiv:1309.1195.
  5. Beilinson A.A., Drinfeld V.G., Opers, arXiv:math.AG/0501398.
  6. Beilinson A.A., Schechtman V.V., Determinant bundles and Virasoro algebras, Comm. Math. Phys. 118 (1988), 651-701.
  7. Ben-Zvi D., Biswas I., Theta functions and SzegHo kernels, Int. Math. Res. Not. 2003 (2003), 1305-1340, arXiv:math.AG/0211441.
  8. Biswas I., Coupled connections on a compact Riemann surface, J. Math. Pures Appl. (9) 82 (2003), 1-42.
  9. Biswas I., Huisman J., Hurtubise J., The moduli space of stable vector bundles over a real algebraic curve, Math. Ann. 347 (2010), 201-233, arXiv:0901.3071.
  10. Earle C.J., On the moduli of closed Riemann surfaces with symmetries, in Advances in the Theory of Riemann Surfaces (Proc. Conf., Stony Brook, N. Y., 1969), Ann. of Math. Stud., Vol. 66, Princeton University Press, Princeton, NJ, 1971, 119-130.
  11. Faltings G., Real projective structures on Riemann surfaces, Compositio Math. 48 (1983), 223-269.
  12. Goldman W.M., The symplectic nature of fundamental groups of surfaces, Adv. Math. 54 (1984), 200-225.
  13. Goldman W.M., Projective structures with Fuchsian holonomy, J. Differential Geom. 25 (1987), 297-326.
  14. Griffiths P., Harris J., Principles of algebraic geometry, Pure Appl. Math., Wiley-Interscience, New York, 1978.
  15. Gunning R.C., On uniformization of complex manifolds: the role of connections, Math. Notes, Vol. 22, Princeton University Press, Princeton, NJ, 1978.
  16. Hejhal D.A., Monodromy groups and linearly polymorphic functions, Acta Math. 135 (1975), 1-55.
  17. Heller S., Real projective structures on Riemann surfaces and new hyper-Kähler manifolds, Manuscripta Math. 171 (2023), 241-262, arXiv:1906.10350.
  18. Hitchin N., Stable bundles and integrable systems, Duke Math. J. 54 (1987), 91-114.
  19. Hubbard J.H., The monodromy of projective structures, in Riemann Surfaces and Related Topics: Proceedings of the 1978 Stony Brook Conference (State University New York, Stony Brook, N.Y., 1978), Ann. of Math. Stud., Vol. 97, Princeton University Press, Princeton, NJ, 1981, 257-275.
  20. Kravetz S., On the geometry of Teichmüller spaces and the structure of their modular groups, Ann. Acad. Sci. Fenn. Ser. A I 278 (1959), 35 pages.
  21. Takhtajan L.A., Real projective connections, V.I. Smirnov's approach, and black-hole-type solutions of the Liouville equation, Theoret. and Math. Phys. 181 (2014), 1307-1316, arXiv:1407.1815.
  22. Teschner J., Quantization of the quantum Hitchin system and the real geometric Langlands correspondence, in Geometry and Physics. Vol. I, Oxford University Press, Oxford, 2018, 347-375.

Previous article  Next article  Contents of Volume 19 (2023)