Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 19 (2023), 065, 11 pages      arXiv:2306.10609      https://doi.org/10.3842/SIGMA.2023.065

Realizations of the Extended Snyder Model

Tea Martinić Bilać a and Stjepan Meljanac b
a) Faculty of Science, University of Split, Rudera Boškovića 33, 21000 Split, Croatia
b) Division of Theoretical Physics, Ruder Bošković Institute, Bijenička cesta 54, 10002 Zagreb, Croatia

Received June 21, 2023, in final form August 31, 2023; Published online September 14, 2023; Formula (2.4) corrected October 10, 2023

Abstract
We present the exact realization of the extended Snyder model. Using similarity transformations, we construct realizations of the original Snyder and the extended Snyder models. Finally, we present the exact new realization of the $\kappa$-deformed extended Snyder model.

Key words: Snyder model; extended Snyder model; $\kappa$-deformed extended Snyder model; realizations.

pdf (375 kb)   tex (16 kb)         [previous version:  pdf (375 kb)   tex (16 kb)]

References

  1. Amelino-Camelia G., Arzano M., Coproduct and star product in field theories on Lie-algebra noncommutative space-times, Phys. Rev. D 65 (2002), 084044, 8 pages, arXiv:hep-th/0105120.
  2. Amelino-Camelia G., Lukierski J., Nowicki A., $\kappa$-deformed covariant phase space and quantum-gravity uncertainty relations, Phys. Atomic Nuclei 61 (1998), 1811-1815, arXiv:hep-th/9706031.
  3. Arzano M., Kowalski-Glikman J., Deformations of spacetime symmetries -- gravity, group-valued momenta, and non-commutative fields, Lecture Notes in Phys., Vol. 986, Springer, Berlin, 2021.
  4. Banerjee R., Kumar K., Roychowdhury D., Symmetries of Snyder-de Sitter space and relativistic particle dynamics, J. High Energy Phys. 2011 (2011), no. 3, 060, 14 pages, arXiv:1101.2021.
  5. Battisti M.V., Meljanac S., Modification of Heisenberg uncertainty relations in noncommutative Snyder space-time geometry, Phys. Rev. D 79 (2009), 067505, 4 pages, arXiv:0812.3755.
  6. Battisti M.V., Meljanac S., Scalar field theory on noncommutative Snyder spacetime, Phys. Rev. D 82 (2010), 024028, 9 pages, arXiv:1003.2108.
  7. Borowiec A., Pachoł A., The classical basis for the $\kappa$-Poincaré Hopf algebra and doubly special relativity theories, J. Phys. A 43 (2010), 045203, 10 pages, arXiv:0903.5251.
  8. Doplicher S., Fredenhagen K., Roberts J.E., Spacetime quantization induced by classical gravity, Phys. Lett. B 331 (1994), 39-44.
  9. Doplicher S., Fredenhagen K., Roberts J.E., The quantum structure of spacetime at the Planck scale and quantum fields, Comm. Math. Phys. 172 (1995), 187-220, arXiv:hep-th/0303037.
  10. Franchino-Viñas S.A., Mignemi S., Worldline formalism in Snyder spaces, Phys. Rev. D 98 (2018), 065010, 10 pages, arXiv:1806.11467.
  11. Garay L.J., Quantum gravity and minimum length, Internat. J. Modern Phys. A 10 (1995), 145-165, arXiv:gr-qc/9403008.
  12. Girelli F., Livine E.R., Scalar field theory in Snyder space-time: alternatives, J. High Energy Phys. 2011 (2011), no. 3, 132, 31 pages, arXiv:1004.0621.
  13. Guo H.-Y., Huang C.-G., Wu H.-T., Yang's model as triply special relativity and the Snyder's model - de Sitter special relativity duality, Phys. Lett. B 663 (2008), 270-274, arXiv:0801.1146.
  14. Kowalski-Glikman J., Nowak S., Non-commutative space-time of doubly special relativity theories, Internat. J. Modern Phys. D 12 (2003), 299-315, arXiv:hep-th/0204245.
  15. Kowalski-Glikman J., Smolin L., Triply special relativity, Phys. Rev. D 70 (2004), 065020, 6 pages, arXiv:hep-th/0406276.
  16. Lukierski J., Meljanac S., Mignemi S., Pachoł A., Quantum perturbative solutions of extended Snyder and Yang models with spontaneous symmetry breaking, arXiv:2212.02316.
  17. Lukierski J., Meljanac S., Mignemi S., Pachoł A., Generalized quantum phase spaces for the $\kappa$-deformed extended Snyder model, Phys. Lett. B 838 (2023), 137709, 8 pages, arXiv:2208.06712.
  18. Lukierski J., Nowicki A., Ruegg H., New quantum Poincaré algebra and $\kappa$-deformed field theory, Phys. Lett. B 293 (1992), 344-352.
  19. Lukierski J., Ruegg H., Nowicki A., Tolstoy V.N., $q$-deformation of Poincaré algebra, Phys. Lett. B 264 (1991), 331-338.
  20. Majid S., Foundations of quantum group theory, Cambridge University Press, Cambridge, 1995.
  21. Meljanac S., Krešić-Jurić S., Differential structure on $\kappa$-Minkowski space, and $\kappa$-Poincaré algebra, Internat. J. Modern Phys. A 26 (2011), 3385-3402, arXiv:1004.4647.
  22. Meljanac S., Krešić-Jurić S., Stojić M., Covariant realizations of kappa-deformed space, Eur. Phys. J. C 51 (2007), 229-240, arXiv:hep-th/0702215.
  23. Meljanac S., Martinić Bilać T., Krešić-Jurić S., Generalized Heisenberg algebra applied to realizations of the orthogonal, Lorentz, and Poincaré algebras and their dual extensions, J. Math. Phys. 61 (2020), 051705, 13 pages, arXiv:2003.02726.
  24. Meljanac S., Meljanac D., Samsarov A., Stojić M., $\kappa$-deformed Snyder spacetime, Modern Phys. Lett. A 25 (2010), 579-590, arXiv:0912.5087.
  25. Meljanac S., Meljanac D., Samsarov A., Stojic M., Kappa Snyder deformations of Minkowski spacetime, realizations and Hopf algebra, Phys. Rev. D 83 (2011), 065009, 16 pages, arXiv:1102.1655.
  26. Meljanac S., Mignemi S., Associative realizations of the extended Snyder model, Phys. Rev. D 102 (2020), 126011, 9 pages, arXiv:2007.13498.
  27. Meljanac S., Mignemi S., Associative realizations of $\kappa$-deformed extended Snyder model, Phys. Rev. D 104 (2021), 086006, 9 pages, arXiv:2106.08131.
  28. Meljanac S., Mignemi S., Unification of $\kappa$-Minkowski and extended Snyder spaces, Phys. Lett. B 814 (2021), 136117, 5 pages, arXiv:2101.05275.
  29. Meljanac S., Mignemi S., Generalizations of Snyder model to curved spaces, Phys. Lett. B 833 (2022), 137289, 6 pages, arXiv:2206.04772.
  30. Meljanac S., Mignemi S., Noncommutative Yang model and its generalizations, J. Math. Phys. 64 (2023), 023505, 9 pages, arXiv:2211.11755.
  31. Meljanac S., Pachoł A., Heisenberg doubles for Snyder-type models, Symmetry 13 (2021), 1055, 13 pages, arXiv:2101.02512.
  32. Meljanac S., Štrajn R., Deformed quantum phase spaces, realizations, star products and twists, SIGMA 18 (2022), 022, 20 pages, arXiv:2112.12038.
  33. Mignemi S., The Snyder-de Sitter model from six dimensions, Classical Quantum Gravity 26 (2009), 245020, 9 pages.
  34. Mignemi S., Rosati G., Relative-locality phenomenology on Snyder spacetime, Classical Quantum Gravity 35 (2018), 145006, 17 pages, arXiv:1803.02134.
  35. Mignemi S., Štrajn R., Snyder dynamics in a Schwarzschild spacetime, Phys. Rev. D 90 (2014), 044019, 5 pages, arXiv:1404.6396.
  36. Snyder H.S., Quantized space-time, Phys. Rev. 71 (1947), 38-41.

Previous article  Next article  Contents of Volume 19 (2023)