Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 19 (2023), 064, 44 pages      arXiv:2201.11594      https://doi.org/10.3842/SIGMA.2023.064

Exponential Networks, WKB and Topological String

Alba Grassi ab, Qianyu Hao c and Andrew Neitzke d
a) Section de Mathématiques, Université de Genève, 1211 Genève 4, Switzerland
b) Theoretical Physics Department, CERN, 1211 Geneva 23, Switzerland
c) Department of Physics, University of Texas at Austin, 2515 Speedway, C1600, Austin, TX 78712-1992, USA
d) Department of Mathematics, Yale University, PO Box 208283, New Haven, CT 06520-8283, USA

Received March 07, 2023, in final form August 23, 2023; Published online September 13, 2023

Abstract
We propose a connection between 3d-5d exponential networks and exact WKB for difference equations associated to five dimensional Seiberg-Witten curves, or equivalently, to quantum mirror curves to toric Calabi-Yau threefolds $X$: the singularities in the Borel planes of local solutions to such difference equations correspond to central charges of 3d-5d BPS KK-modes. It follows that there should be distinguished local solutions of the difference equation in each domain of the complement of the exponential network, and these solutions jump at the walls of the network. We verify and explore this picture in two simple examples of 3d-5d systems, corresponding to taking the toric Calabi-Yau $X$ to be either $\mathbb{C}^3$ or the resolved conifold. We provide the full list of local solutions in each sector of the Borel plane and in each domain of the complement of the exponential network, and find that local solutions in disconnected domains correspond to non-perturbative open topological string amplitudes on $X$ with insertions of branes at different positions of the toric diagram. We also study the Borel summation of the closed refined topological string free energy on $X$ and the corresponding non-perturbative effects, finding that central charges of 5d BPS KK-modes are related to the singularities in the Borel plane.

Key words: difference equation; Stokes phenomenon; BPS states; topological string; exponential network.

pdf (1287 kb)   tex (563 kb)  

References

  1. Aganagic M., Cheng M.C.N., Dijkgraaf R., Krefl D., Vafa C., Quantum geometry of refined topological strings, J. High Energy Phys. 2012 (2012), no. 11, 019, 53 pages, arXiv:1105.0630.
  2. Aganagic M., Dijkgraaf R., Klemm A., Mariño M., Vafa C., Topological strings and integrable hierarchies, Comm. Math. Phys. 261 (2006), 451-516, arXiv:hep-th/0312085.
  3. Aganagic M., Klemm A., Vafa C., Disk instantons, mirror symmetry and the duality web, Z. Naturforsch. A 57 (2002), 1-28, arXiv:hep-th/0105045.
  4. Aganagic M., Shakirov S., Knot homology and refined Chern-Simons index, Comm. Math. Phys. 333 (2015), 187-228, arXiv:1105.5117.
  5. Alexandrov S., Pioline B., Conformal TBA for resolved conifolds, Ann. Henri Poincaré 23 (2022), 1909-1949, arXiv:2106.12006.
  6. Alim M., Hollands L., Tulli I., Quantum curves, resurgence and exact WKB, SIGMA 19 (2023), 009, 82 pages, arXiv:2203.08249.
  7. Alim M., Saha A., Teschner J., Tulli I., Mathematical structures of non-perturbative topological string theory: from GW to DT invariants, Comm. Math. Phys. 399 (2023), 1039-1101, arXiv:2109.06878.
  8. Alim M., Saha A., Tulli I., A hyperkähler geometry associated to the BPS structure of the resolved conifold, J. Geom. Phys. 180 (2022), 104618, 32 pages, arXiv:2106.11976.
  9. Banerjee S., Longhi P., Romo M., Exploring 5d BPS spectra with exponential networks, Ann. Henri Poincaré 20 (2019), 4055-4162, arXiv:1811.02875.
  10. Banerjee S., Longhi P., Romo M., Exponential BPS graphs and D brane counting on toric Calabi-Yau threefolds: Part I, Comm. Math. Phys. 388 (2021), 893-945, arXiv:1910.05296.
  11. Banerjee S., Longhi P., Romo M., Exponential BPS graphs and D brane counting on toric Calabi-Yau threefolds: Part II, arXiv:2012.09769.
  12. Beem C., Dimofte T., Pasquetti S., Holomorphic blocks in three dimensions, J. High Energy Phys. 2014 (2014), no. 12, 177, 120 pages, arXiv:1211.1986.
  13. Bershtein M., Gavrylenko P., Grassi A., Quantum spectral problems and isomonodromic deformations, Comm. Math. Phys. 393 (2022), 347-418, arXiv:2105.00985.
  14. Bershtein M., Gavrylenko P., Marshakov A., Cluster integrable systems, $q$-Painlevé equations and their quantization, J. High Energy Phys. 2018 (2018), no. 2, 077, 34 pages, arXiv:1711.02063.
  15. Bershtein M.A., Shchechkin A.I., $q$-deformed Painlevé $\tau$ function and $q$-deformed conformal blocks, J. Phys. A 50 (2017), 085202, 23 pages, arXiv:1608.02566.
  16. Bonelli G., Del Monte F., Tanzini A., BPS quivers of five-dimensional SCFTs, topological strings and $q$-Painlevé equations, Ann. Henri Poincaré 22 (2021), 2721-2773, arXiv:2007.11596.
  17. Bonelli G., Grassi A., Tanzini A., Quantum curves and $q$-deformed Painlevé equations, Lett. Math. Phys. 109 (2019), 1961-2001, arXiv:1710.11603.
  18. Bouchard V., Klemm A., Mariño M., Pasquetti S., Remodeling the B-model, Comm. Math. Phys. 287 (2009), 117-178, arXiv:0709.1453.
  19. Bridgeland T., Riemann-Hilbert problems for the resolved conifold and non-perturbative partition functions, J. Differential Geom. 115 (2020), 395-435, arXiv:1703.02776.
  20. Bullimore M., Crew S., Zhang D., Boundaries, Vermas and factorisation, J. High Energy Phys. 2021 (2021), no. 4, 263, 50 pages, arXiv:2010.09741.
  21. Bullimore M., Zhang D., 3d $\mathcal N = 4$ gauge theories on an elliptic curve, SciPost Phys. 13 (2022), 005, 91 pages, arXiv:2109.10907.
  22. Cecotti S., Gaiotto D., Vafa C., $tt^\ast$ geometry in 3 and 4 dimensions, J. High Energy Phys. 2014 (2014), no. 5, 055, 112 pages, arXiv:1312.1008.
  23. Cheng S., Sułkowski P., Refined open topological strings revisited, Phys. Rev. D 104 (2021), 106012, 35 pages, arXiv:2104.00713.
  24. Cherkis S.A., Phases of five-dimensional theories, monopole walls, and melting crystals, J. High Energy Phys. 2014 (2014), no. 6, 027, 38 pages, arXiv:1402.7117.
  25. Closset C., Del Zotto M., On 5d SCFTs and their BPS quivers part I: B-branes and brane tilings, Adv. Theor. Math. Phys. 26 (2022), 37-142, arXiv:1912.13502.
  26. Codesido S., Grassi A., Mariño M., Spectral theory and mirror curves of higher genus, Ann. Henri Poincaré 18 (2017), 559-622, arXiv:1507.02096.
  27. Codesido S., Mariño M., Holomorphic anomaly and quantum mechanics, J. Phys. A 51 (2018), 055402, 30 pages, arXiv:1612.07687.
  28. Codesido S., Mariño M., Schiappa R., Non-perturbative quantum mechanics from non-perturbative strings, Ann. Henri Poincaré 20 (2019), 543-603, arXiv:1712.02603.
  29. Couso-Santamaría R., Edelstein J.D., Schiappa R., Vonk M., Resurgent transseries and the holomorphic anomaly: nonperturbative closed strings in local $\mathbb{CP}^2$, Comm. Math. Phys. 338 (2015), 285-346, arXiv:1407.4821.
  30. Couso-Santamaría R., Mariño M., Schiappa R., Resurgence matches quantization, J. Phys. A 50 (2017), 145402, 34 pages, arXiv:1610.06782.
  31. Del Monte F., Longhi P., Quiver symmetries and wall-crossing invariance, Comm. Math. Phys. 398 (2023), 89-132, arXiv:2107.14255.
  32. Dijkgraaf R., Hollands L., Sułkowski P., Vafa C., Supersymmetric gauge theories, intersecting branes and free fermions, J. High Energy Phys. 2008 (2008), no. 2, 106, 57 pages, arXiv:0709.4446.
  33. Dimofte T., Gaiotto D., Gukov S., Gauge theories labelled by three-manifolds, Comm. Math. Phys. 325 (2014), 367-419, arXiv:1108.4389.
  34. Dimofte T., Gaiotto D., Paquette N.M., Dual boundary conditions in 3d SCFT's, J. High Energy Phys. 2018 (2018), no. 5, 060, 101 pages, arXiv:1712.07654.
  35. Dimofte T., Gukov S., Hollands L., Vortex counting and Lagrangian 3-manifolds, Lett. Math. Phys. 98 (2011), 225-287, arXiv:1006.0977.
  36. Dingle R.B., Morgan G.J., WKB methods for difference equations I, Appl. Sci. Res. 18 (1968), 221-237.
  37. Drukker N., Mariño M., Putrov P., Nonperturbative aspects of ABJM theory, J. High Energy Phys. 2011 (2011), no. 11, 141, 29 pages, arXiv:1103.4844.
  38. Eager R., Selmani S.A., Walcher J., Exponential networks and representations of quivers, J. High Energy Phys. 2017 (2017), no. 8, 063, 68 pages, arXiv:1611.06177.
  39. Elliott C., Pestun V., Multiplicative Hitchin systems and supersymmetric gauge theory, Selecta Math. (N.S.) 25 (2019), 64, 82 pages, arXiv:1812.05516.
  40. Faddeev L.D., Discrete Heisenberg-Weyl group and modular group, Lett. Math. Phys. 34 (1995), 249-254, arXiv:hep-th/9504111.
  41. Faddeev L.D., Kashaev R.M., Quantum dilogarithm, Modern Phys. Lett. A 9 (1994), 427-434, arXiv:hep-th/9310070.
  42. Franco S., Hatsuda Y., Mariño M., Exact quantization conditions for cluster integrable systems, J. Stat. Mech. Theory Exp. 2016 (2016), 063107, 30 pages, arXiv:1512.03061.
  43. Gaiotto D., Opers and TBA, arXiv:1403.6137.
  44. Gaiotto D., Moore G.W., Neitzke A., Four-dimensional wall-crossing via three-dimensional field theory, Comm. Math. Phys. 299 (2010), 163-224, arXiv:0807.4723.
  45. Gaiotto D., Moore G.W., Neitzke A., Wall-crossing in coupled 2d-4d systems, J. High Energy Phys. 2012 (2012), no. 12, 082, 169 pages, arXiv:1103.2598.
  46. Gaiotto D., Moore G.W., Neitzke A., Framed BPS states, Adv. Theor. Math. Phys. 17 (2013), 241-397, arXiv:1006.0146.
  47. Gaiotto D., Moore G.W., Neitzke A., Spectral networks, Ann. Henri Poincaré 14 (2013), 1643-1731, arXiv:1204.4824.
  48. Gaiotto D., Moore G.W., Neitzke A., Wall-crossing, Hitchin systems, and the WKB approximation, Adv. Math. 234 (2013), 239-403, arXiv:0907.3987.
  49. Garoufalidis S., Kashaev R., Resurgence of Faddeev's quantum dilogarithm, in Topology and Geometry -- a Collection of Cssays Dedicated to Vladimir G. Turaev, IRMA Lect. Math. Theor. Phys., Vol. 33, Eur. Math. Soc., Zürich, 2021, 257-271, arXiv:2008.12465.
  50. Gopakumar R., Vafa C., M-theory and topological strings-II, arXiv:hep-th/9812127.
  51. Grassi A., Gu J., BPS relations from spectral problems and blowup equations, Lett. Math. Phys. 109 (2019), 1271-1302, arXiv:1609.05914.
  52. Grassi A., Gu J., Mariño M., Non-perturbative approaches to the quantum Seiberg-Witten curve, J. High Energy Phys. 2020 (2020), no. 7, 106, 51 pages, arXiv:1908.07065.
  53. Grassi A., Hao Q., Neitzke A., Exact WKB methods in ${\rm SU}(2)$ ${\rm N}_f=1$, J. High Energy Phys. 2022 (2022), no. 1, 046, 63 pages, arXiv:2105.03777.
  54. Grassi A., Hatsuda Y., Mariño M., Topological strings from quantum mechanics, Ann. Henri Poincaré 17 (2016), 3177-3235, arXiv:1410.3382.
  55. Grassi A., Mariño M., The complex side of the TS/ST correspondence, J. Phys. A 52 (2019), 055402, 22 pages, arXiv:1708.08642.
  56. Grassi A., Mariño M., Zakany S., Resumming the string perturbation series, J. High Energy Phys. 2015 (2015), no. 5, 038, 35 pages, arXiv:1405.4214.
  57. Hatsuda Y., Spectral zeta function and non-perturbative effects in ABJM Fermi-gas, J. High Energy Phys. 2015 (2015), no. 11, 086, 33 pages, arXiv:1503.07883.
  58. Hatsuda Y., Mariño M., Exact quantization conditions for the relativistic Toda lattice, J. High Energy Phys. 2016 (2016), no. 5, 133, 35 pages, arXiv:1511.02860.
  59. Hatsuda Y., Mariño M., Moriyama S., Okuyama K., Non-perturbative effects and the refined topological string, J. High Energy Phys. 2014 (2014), no. 9, 168, 42 pages, arXiv:1306.1734.
  60. Hatsuda Y., Moriyama S., Okuyama K., Instanton effects in ABJM theory from Fermi gas approach, J. High Energy Phys. 2013 (2013), no. 1, 158, 40 pages, arXiv:1211.1251.
  61. Hatsuda Y., Okuyama K., Probing non-perturbative effects in M-theory, J. High Energy Phys. 2014 (2014), no. 10, 158, 35 pages, arXiv:1407.3786.
  62. Hatsuda Y., Okuyama K., Resummations and non-perturbative corrections, J. High Energy Phys. 2015 (2015), no. 9, 051, 29 pages, arXiv:1505.07460.
  63. Hatsuda Y., Sciarappa A., Zakany S., Exact quantization conditions for the elliptic Ruijsenaars-Schneider model, J. High Energy Phys. 2018 (2018), no. 11, 118, 65 pages, arXiv:1809.10294.
  64. Hollands L., Neitzke A., Exact WKB and abelianization for the $T_3$ equation, Comm. Math. Phys. 380 (2020), 131-186, arXiv:1906.04271.
  65. Hollands L., Rüter P., Szabo R.J., A geometric recipe for twisted superpotentials, J. High Energy Phys. 2021 (2021), no. 12, 164, 91 pages, arXiv:2109.14699.
  66. Hori K., Vafa C., Mirror symmetry, arXiv:hep-th/0002222.
  67. Huang M.-x., Kashani-Poor A.-K., Klemm A., The $\Omega$ deformed B-model for rigid ${\mathcal N}=2$ theories, Ann. Henri Poincaré 14 (2013), 425-497, arXiv:1109.5728.
  68. Hyun S., Yi S.-H., Non-compact topological branes on conifold, J. High Energy Phys. 2006 (2006), no. 11, 075, 34 pages, arXiv:hep-th/0609037.
  69. Iqbal A., Kozçaz C., Vafa C., The refined topological vertex, J. High Energy Phys. 2009 (2009), no. 10, 069, 58 pages, arXiv:hep-th/0701156.
  70. Jeong S., Nekrasov N., Opers, surface defects, and Yang-Yang functional, Adv. Theor. Math. Phys. 24 (2020), 1789-1916, arXiv:1806.08270.
  71. Jeong S., Nekrasov N., Riemann-Hilbert correspondence and blown up surface defects, J. High Energy Phys. 2020 (2020), no. 12, 006, 83 pages, arXiv:2007.03660.
  72. Kashani-Poor A.-K., The wave function behavior of the open topological string partition function on the conifold, J. High Energy Phys. 2007 (2007), no. 4, 004, 47 pages, arXiv:hep-th/0606112.
  73. Kashani-Poor A.-K., Quantization condition from exact WKB for difference equations, J. High Energy Phys. 2016 (2016), no. 6, 180, 34 pages, arXiv:1604.01690.
  74. Katz S., Klemm A., Vafa C., Geometric engineering of quantum field theories, Nuclear Phys. B 497 (1997), 173-195, arXiv:hep-th/9609239.
  75. Klemm A., Lerche W., Mayr P., Vafa C., Warner N., Self-dual strings and ${\mathcal N}=2$ supersymmetric field theory, Nuclear Phys. B 477 (1996), 746-764, arXiv:hep-th/9604034.
  76. Kozçaz C., Shakirov S., Vafa C., Yan W., Refined topological branes, Comm. Math. Phys. 385 (2021), 937-961, arXiv:1805.00993.
  77. Krefl D., Mkrtchyan R.L., Exact Chern-Simons/topological string duality, J. High Energy Phys. 2015 (2015), no. 10, 045, 27 pages, arXiv:1506.03907.
  78. Krefl D., Walcher J., Extended holomorphic anomaly in gauge theory, Lett. Math. Phys. 95 (2011), 67-88, arXiv:1007.0263.
  79. Lencsés M., Novaes F., Classical conformal blocks and accessory parameters from isomonodromic deformations, J. High Energy Phys. 2018 (2018), no. 4, 096, 37 pages, arXiv:1709.03476.
  80. Lockhart G., Vafa C., Superconformal partition functions and non-perturbative topological strings, J. High Energy Phys. 2018 (2018), no. 10, 051, 43 pages, arXiv:1210.5909.
  81. Longhi P., Instanton particles and monopole strings in 5D SU(2) supersymmetric Yang-Mills theory, Phys. Rev. Lett. 126 (2021), 211601, 5 pages.
  82. Mariño M., Lectures on non-perturbative effects in large $N$ gauge theories, matrix models and strings, Fortschr. Phys. 62 (2014), 455-540, arXiv:1206.6272.
  83. Mariño M., Spectral theory and mirror symmetry, in String-Math 2016, Proc. Sympos. Pure Math., Vol. 98, American Mathematical Society, Providence, RI, 2018, 259-294, arXiv:1506.07757.
  84. Mariño M., Zakany S., Exact eigenfunctions and the open topological string, J. Phys. A 50 (2017), 325401, 50 pages, arXiv:1606.05297.
  85. Mariño M., Zakany S., Wavefunctions, integrability, and open strings, J. High Energy Phys. 2019 (2019), no. 5, 014, 37 pages, arXiv:1706.07402.
  86. Maruyoshi K., Taki M., Deformed prepotential, quantum integrable system and Liouville field theory, Nuclear Phys. B 841 (2010), 388-425, arXiv:1006.4505.
  87. Mironov A., Morosov A., Nekrasov functions and exact Bohr-Sommerfeld integrals, J. High Energy Phys. 2010 (2010), no. 4, 040, 15 pages, arXiv:0910.5670.
  88. Mochizuki T., Doubly periodic monopoles and $q$-difference modules, arXiv:1902.03551.
  89. Nekrasov N.A., Blowups in BPS/CFT correspondence, and Painlevé VI, Ann. Henri Poincaré to appear, arXiv:2007.03646.
  90. Nekrasov N.A., Rosly A.A., Shatashvili S.L., Darboux coordinates, Yang-Yang functional, and gauge theory, Theoret. and Math. Phys. 181 (2014), 1206-1234, Erratum, Theoret. and Math. Phys. textbf 182 (2015), 311, arXiv:1103.3919.
  91. Nekrasov N.A., Shatashvili S.L., Quantization of integrable systems and four dimensional gauge theories, in XVIth International Congress on Mathematical Physics, World Scientific Publishing, Hackensack, NJ, 2010, 265-289, arXiv:0908.4052.
  92. Okuda T., Mirror symmetry and the flavor vortex operator in two dimensions, J. High Energy Phys. 2015 (2015), no. 10, 174, 7 pages, arXiv:1508.07179.
  93. Ooguri H., Vafa C., Knot invariants and topological strings, Nuclear Phys. B 577 (2000), 419-438, arXiv:hep-th/9912123.
  94. Pasquetti S., Schiappa R., Borel and Stokes nonperturbative phenomena in topological string theory and $c=1$ matrix models, Ann. Henri Poincaré 11 (2010), 351-431, arXiv:0907.4082.
  95. Polchinski J., Combinatorics of boundaries in string theory, Phys. Rev. D 50 (1994), R6041-R6045, arXiv:hep-th/9407031.
  96. Polchinski J., Topological charges in 2D $\mathcal{N}=(2,2)$ theories and massive BPS states, Phys. Rev. D 92 (2015), 025044, 12 pages, arXiv:1505.01508.
  97. Sun K., Wang X., Huang M.-x., Exact quantization conditions, toric Calabi-Yau and non-perturbative topological string, J. High Energy Phys. 2017 (2017), no. 1, 061, 102 pages, arXiv:1606.07330.
  98. Wang X., Zhang G., Huang M.-x., New exact quantization condition for toric Calabi-Yau geometries, Phys. Rev. Lett. 115 (2015), 121601, 5 pages, arXiv:1505.05360.
  99. Yoshida Y., Sugiyama K., Localization of three-dimensional $\mathcal{N}=2$ supersymmetric theories on $S^1 \times D^2$, PTEP. Prog. Theor. Exp. Phys. (2020), 113B02, 41 pages, arXiv:1409.6713.
  100. Zakany S., Quantized mirror curves and resummed WKB, J. High Energy Phys. 2019 (2019), no. 5, 114, 42 pages, arXiv:1711.01099.

Previous article  Next article  Contents of Volume 19 (2023)