Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 19 (2023), 062, 18 pages      arXiv:2208.12690      https://doi.org/10.3842/SIGMA.2023.062

Separation of Variables and Superintegrability on Riemannian Coverings

Claudia Maria Chanu a and Giovanni Rastelli b
a) Dipartimento di Scienze Umane e Sociali, Università della Valle d'Aosta, Italy
b) Dipartimento di Matematica, Università di Torino, Italy

Received January 11, 2023, in final form August 23, 2023; Published online September 03, 2023

Abstract
We introduce Stäckel separable coordinates on the covering manifolds $M_k$, where $k$ is a rational parameter, of certain constant-curvature Riemannian manifolds with the structure of warped manifold. These covering manifolds appear implicitly in literature as connected with superintegrable systems with polynomial in the momenta first integrals of arbitrarily high degree, such as the Tremblay-Turbiner-Winternitz system. We study here for the first time multiseparability and superintegrability of natural Hamiltonian systems on these manifolds and see how these properties depend on the parameter $k$.

Key words: Riemannian coverings; integrable systems; separable coordinates.

pdf (603 kb)   tex (307 kb)  

References

  1. Appels M., Gregory R., Kubiznak D., Thermodynamics of accelerating black holes, Phys. Rev. Lett. 117 (2016), 131303, 5 pages, arXiv:1604.08812.
  2. Benenti S., Intrinsic characterization of the variable separation in the Hamilton-Jacobi equation, J. Math. Phys. 38 (1997), 6578-6602.
  3. Benenti S., Chanu C., Rastelli G., Remarks on the connection between the additive separation of the Hamilton-Jacobi equation and the multiplicative separation of the Schrödinger equation. I. The completeness and Robertson conditions, J. Math. Phys. 43 (2002), 5183-5222.
  4. Benenti S., Chanu C., Rastelli G., Remarks on the connection between the additive separation of the Hamilton-Jacobi equation and the multiplicative separation of the Schrödinger equation. II. First integrals and symmetry operators, J. Math. Phys. 43 (2002), 5223-5253.
  5. Bolsinov A.V., Matveev V.S., Fomenko A.T., Two-dimensional Riemannian metrics with an integrable geodesic flow. Local and global geometries, Sb. Math. 189 (1998), 1441-1466.
  6. Chanu C., Degiovanni L., Rastelli G., The Tremblay-Turbiner-Winternitz system as extended Hamiltonian, J. Math. Phys. 55 (2014), 122701, 8 pages, arXiv:1404.4825.
  7. Chanu C., Degiovanni L., Rastelli G., Extended Hamiltonians, coupling-constant metamorphosis and the Post-Winternitz system, SIGMA 11 (2015), 094, 9 pages, arXiv:1509.07288.
  8. Chanu C., Rastelli G., Eigenvalues of Killing tensors and separable webs on Riemannian and pseudo-Riemannian manifolds, SIGMA 3 (2007), 021, 21 pages, arXiv:nlin.SI/0612042.
  9. Chanu C., Rastelli G., Extended Hamiltonians and shift, ladder functions and operators, Ann. Physics 386 (2017), 254-274, arXiv:1705.09519.
  10. Chavel I., Riemannian geometry: a modern introduction, 2nd ed., Cambridge Stud. Adv. Math., Vol. 98, Cambridge University Press, Cambridge, 2006.
  11. Cooper D., Hodgson C.D., Kerckhoff S.P., Three-dimensional orbifolds and cone-manifolds, MSJ Memoirs, Vol. 5, Mathematical Society of Japan, Tokyo, 2000.
  12. Dunajski M., Gavrea N., Elizabethan vortices, Nonlinearity 36 (2023), 4169-4186, arXiv:2301.06191.
  13. Katzin G.H., Levine J., Quadratic first integrals of the geodesics in spaces of constant curvature, Tensor (N.S.) 16 (1965), 97-104.
  14. Matveev V.S., An example of a geodesic flow on the Klein bottle, integrable by a polynomial in the momentum of the fourth degree, Vestnik Moskov. Univ. Ser. I Mat. Mekh. (1997), no. 4, 47-48.
  15. Miller Jr. W., Post S., Winternitz P., Classical and quantum superintegrability with applications, J. Phys. A 46 (2013), 423001, 97 pages, arXiv:1309.2694.
  16. Post S., Winternitz P., An infinite family of superintegrable deformations of the Coulomb potential, J. Phys. A 43 (2010), 222001, 11 pages, arXiv:1003.5230.
  17. Tremblay F., Turbiner A.V., Winternitz P., An infinite family of solvable and integrable quantum systems on a plane, J. Phys. A 42 (2009), 242001, 10 pages, arXiv:0904.0738.

Previous article  Next article  Contents of Volume 19 (2023)