Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 19 (2023), 061, 16 pages      arXiv:2304.07843      https://doi.org/10.3842/SIGMA.2023.061

Polynomial Solutions Modulo $p^s$ of Differential KZ and Dynamical Equations

Pavel Etingof a and Alexander Varchenko b
a) Department of Mathematics, MIT, Cambridge, MA 02139, USA
b) Department of Mathematics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3250, USA

Received April 18, 2023, in final form August 23, 2023; Published online September 01, 2023

Abstract
We construct polynomial solutions modulo $p^s$ of the differential KZ and dynamical equations where $p$ is an odd prime number.

Key words: differential KZ and dynamical equations; polynomial solutions modulo $p^s$; hypergeometric integrals.

pdf (450 kb)   tex (19 kb)  

References

  1. Christe P., Flume R., On the identification of finite operator algebras in two-dimensional conformally invariant field theories, Phys. Lett. B 188 (1987), 219-225.
  2. Date E., Jimbo M., Matsuo A., Miwa T., Hypergeometric-type integrals and the $\mathfrak{sl}(2,\mathbb{C})$ Knizhnik-Zamolodchikov equation, Internat. J. Modern Phys. B 4 (1990), 1049-105.
  3. Etingof P., Frenkel I.B., Kirillov Jr. A.A., Lectures on representation theory and Knizhnik-Zamolodchikov equations, Math. Surveys Monogr., Vol. 58, American Mathematical Society, Providence, RI, 1998.
  4. Etingof P., Varchenko A., Dynamical Weyl groups and applications, Adv. Math. 167 (2002), 74-127, arXiv:math.QA/0011001.
  5. Felder G., Markov Y., Tarasov V., Varchenko A., Differential equations compatible with KZ equations, Math. Phys. Anal. Geom. 3 (2000), 139-177, arXiv:math.QA/0001184.
  6. Frenkel I.B., Reshetikhin N.Yu., Quantum affine algebras and holonomic difference equations, Comm. Math. Phys. 146 (1992), 1-60.
  7. Knizhnik V.G., Zamolodchikov A.B., Current algebra and Wess-Zumino model in two dimensions, Nuclear Phys. B 247 (1984), 83-103.
  8. Markov Y., Tarasov V., Varchenko A., The determinant of a hypergeometric period matrix, Houston J. Math. 24 (1998), 197-220, arXiv:alg-geom/9709017.
  9. Maulik D., Okounkov A., Quantum groups and quantum cohomology, Astérisque 408 (2019), ix+209 pages, arXiv:1211.1287.
  10. Mukhin E., Varchenko A., Solutions of the $\mathfrak{sl}_2$ qKZ equations modulo an integer, arXiv:2208.09721.
  11. Okounkov A., Smirnov A., Quantum difference equation for Nakajima varieties, Invent. Math. 229 (2022), 1203-1299, arXiv:1602.09007.
  12. Rimányi R., Varchenko A., The $\mathbb{F}_p$-Selberg integral of type $A_n$, Lett. Math. Phys. 111 (2021), 71, 24 pages, arXiv:2012.01391.
  13. Schechtman V., Varchenko A., Integral representations of $N$-point conformal correlators in the WZW model, Preprint MPI/89-51, Max-Planck Institute, Bonn, 1989.
  14. Schechtman V., Varchenko A., Arrangements of hyperplanes and Lie algebra homology, Invent. Math. 106 (1991), 139-194.
  15. Schechtman V., Varchenko A., Solutions of KZ differential equations modulo $p$, Ramanujan J. 48 (2019), 655-683, arXiv:1707.02615.
  16. Smirnov A., Varchenko A., The $p$-adic approximations of vertex functions via $3D$-mirror symmetry, arXiv:2302.03092.
  17. Tarasov V., Varchenko A., Geometry of $q$-hypergeometric functions as a bridge between Yangians and quantum affine algebras, Invent. Math. 128 (1997), 501-588, arXiv:q-alg/9604011.
  18. Tarasov V., Varchenko A., Duality for Knizhnik-Zamolodchikov and dynamical equations, Acta Appl. Math. 73 (2002), 141-154, arXiv:math.QA/0112005.
  19. Tarasov V., Varchenko A., Landau-Ginzburg mirror, quantum differential equations and qKZ difference equations for a partial flag variety, J. Geom. Phys. 184 (2023), 104711, 58 pages, arXiv:2203.03039.
  20. Varchenko A., Multidimensional hypergeometric functions and representation theory of Lie algebras and quantum groups, Adv. Ser. Math. Phys., Vol. 21, World Scientific Publishing Co., Inc., River Edge, NJ, 1995.
  21. Varchenko A., Special functions, KZ type equations, and representation theory, CBMS Reg. Conf. Ser. Math., Vol. 98, American Mathematical Society, Providence, RI, 2003.
  22. Varchenko A., Dynamical and qKZ equations modulo $p^s$: an example, Math. Notes 112 (2022), 1003-1016, arXiv:2205.03980.
  23. Varchenko A., Notes on solutions of KZ equations modulo $p^s$ and $p$-adic limit $s\to\infty$ (with an appendix by Steven Sperber and Varchenko), in Hypergeometry, Integrability and Lie Theory, Contemp. Math., Vol. 780, American Mathematical Society, Providence, RI, 2022, 309-347, arXiv:2103.01725.
  24. Varchenko A., Zudilin W., Congruences for Hasse-Witt matrices and solutions of $p$-adic KZ equations, arXiv:2108.12679.

Previous article  Next article  Contents of Volume 19 (2023)