|
SIGMA 19 (2023), 059, 10 pages arXiv:2301.13417
https://doi.org/10.3842/SIGMA.2023.059
Ten Compatible Poisson Brackets on $\mathbb P^5$
Ville Nordstrom a and Alexander Polishchuk ab
a) Department of Mathematics, University of Oregon, Eugene, OR 97403, USA
b) National Research University Higher School of Economics, Moscow, Russia
Received February 18, 2023, in final form August 03, 2023; Published online August 13, 2023
Abstract
We give explicit formulas for ten compatible Poisson brackets on $\mathbb P^5$ found in arXiv:2007.12351.
Key words: compatible Poisson brackets; homological perturbation; Massey products.
pdf (354 kb)
tex (15 kb)
References
- Bondal A., Non-commutative deformations and Poisson brackets on projective spaces, Preprint MPI 93-67, Max Planck Institute for Mathematics, 1993.
- Feigin B.L., Odesskii A.V., Vector bundles on an elliptic curve and Sklyanin algebras, in Topics in Quantum Groups and Finite-Type Invariants, Amer. Math. Soc. Transl. Ser. 2, Vol. 185, American Mathematical Society, Providence, RI, 1998, 65-84, arXiv:q-alg/9509021.
- Hua Z., Polishchuk A., Elliptic bihamiltonian structures from relative shifted Poisson structures, arXiv:2007.12351.
- Keller B., Introduction to $A$-infinity algebras and modules, Homology Homotopy Appl. 3 (2001), 1-35, arXiv:math.RA/9910179.
- Kontsevich M., Soibelman Y., Homological mirror symmetry and torus fibrations, in Symplectic Geometry and Mirror Symmetry (Seoul, 2000), World Scientific, River Edge, NJ, 2001, 203-263, arXiv:math.SG/0011041.
- Odesskii A., Wolf T., Compatible quadratic Poisson brackets related to a family of elliptic curves, J. Geom. Phys. 63 (2013), 107-117, arXiv:1204.1299.
- Polishchuk A., Algebraic geometry of Poisson brackets, J. Math. Sci. (N.Y.) 84 (1997), 1413-1444.
- Polishchuk A., Poisson structures and birational morphisms associated with bundles on elliptic curves, Int. Math. Res. Not. 1998 (1998), 683-703, arXiv:alg-geom/9712022.
|
|