|
SIGMA 19 (2023), 041, 11 pages arXiv:2208.14936
https://doi.org/10.3842/SIGMA.2023.041
Contribution to the Special Issue on Topological Solitons as Particles
Deformations of Instanton Metrics
Roger Bielawski a, Yannic Borchard a and Sergey A. Cherkis b
a) Institut für Differentialgeometrie, Leibniz Universität Hannover, Welfengarten 1, 30167 Hannover, Germany
b) Department of Mathematics, The University of Arizona, 617 N. Santa Rita Ave., Tucson, AZ 85721-0089, USA
Received January 25, 2023, in final form June 05, 2023; Published online June 13, 2023
Abstract
We discuss a class of bow varieties which can be viewed as Taub-NUT deformations of moduli spaces of instantons on noncommutative $\mathbb R^4$. Via the generalized Legendre transform, we find the Kähler potential on each of these spaces.
Key words: instanton; bow variety; hyperkähler geometry; generalised Legendre transform.
pdf (451 kb)
tex (43 kb)
References
- Adams M.R., Harnad J., Hurtubise J., Isospectral Hamiltonian flows in finite and infinite dimensions. II. Integration of flows, Comm. Math. Phys. 134 (1990), 555-585.
- Beauville A., Jacobiennes des courbes spectrales et systèmes hamiltoniens complètement intégrables, Acta Math. 164 (1990), 211-235.
- Bielawski R., Asymptotic metrics for ${\rm SU}(N)$-monopoles, Comm. Math. Phys. 1999 (1998), 297-325, arXiv:hep-th/9801092.
- Bielawski R., Reducible spectral curves and the hyperkähler geometry of adjoint orbits, J. Lond. Math. Soc. 76 (2007), 719-738, arXiv:math.DG/0605309.
- Bielawski R., Line bundles on spectral curves and the generalised Legendre transform construction of hyperkähler metrics, J. Geom. Phys. 59 (2009), 374-390, arXiv:0806.0510.
- Cherkis S.A., Instantons on the Taub-NUT space, Adv. Theor. Math. Phys. 14 (2010), 609-641, arXiv:0902.4724.
- Cherkis S.A., Instantons on gravitons, Comm. Math. Phys. 306 (2011), 449-483, arXiv:1007.0044.
- Cherkis S.A., Larraín-Hubach A., Stern M., Instantons on multi-Taub-NUT spaces III: down transform, completeness, and isometry, in preparation.
- Donaldson S.K., Nahm's equations and the classification of monopoles, Comm. Math. Phys. 96 (1984), 387-407.
- Foscolo L., Ross C., Calorons and constituent monopoles, arXiv:2207.08705.
- Hitchin N.J., On the construction of monopoles, Comm. Math. Phys. 89 (1983), 145-190.
- Hitchin N.J., Karlhede A., Lindström U., Roček M., Hyperkähler metrics and supersymmetry, Comm. Math. Phys. 108 (1987), 535-589.
- Hurtubise J., The classification of monopoles for the classical groups, Comm. Math. Phys. 120 (1989), 613-641.
- Hurtubise J., Murray M.K., On the construction of monopoles for the classical groups, Comm. Math. Phys. 122 (1989), 35-89.
- Lee K., Weinberg E.J., Yi P., Moduli space of many BPS monopoles for arbitrary gauge groups, Phys. Rev. D 54 (1996), 1633-1643, arXiv:hep-th/9602167.
- Lindström U., Roček M., New hyper-Kähler metrics and new supermultiplets, Comm. Math. Phys. 115 (1988), 21-29.
- Malyshev A.N., Factorization of matrix polynomials, Sib. Math. J. 23 (1982), 399-408.
- Nakajima H., Lectures on Hilbert schemes of points on surfaces, Univ. Lecture Ser., Vol. 18, Amer. Math. Soc., Providence, RI, 1999.
- Nekrasov N., Schwarz A., Instantons on noncommutative $\mathbb{R}^4$, and $(2,0)$ superconformal six-dimensional theory, Comm. Math. Phys. 198 (1998), 689-703, arXiv:hep-th/9802068.
- Simpson C.T., Moduli of representations of the fundamental group of a smooth projective variety. I, Inst. Hautes Études Sci. Publ. Math. 79 (1994), 47-129.
- Takayama Y., Bow varieties and ALF spaces, Math. Proc. Cambridge Philos. Soc. 158 (2015), 37-82.
|
|