Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 19 (2023), 040, 22 pages      arXiv:2202.13762      https://doi.org/10.3842/SIGMA.2023.040
Contribution to the Special Issue on Non-Commutative Algebra, Probability and Analysis in Action

The Double Fock Space of Type B

Marek Bożejko a and Wiktor Ejsmont b
a) Institute of Mathematics, University of Wrocław, Pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland
b) Department of Telecommunications and Teleinformatics, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland

Received March 28, 2022, in final form May 25, 2023; Published online June 12, 2023

Abstract
In this article, we introduce the notion of a double Fock space of type B. We will show that this new construction is compatible with combinatorics of counting positive and negative inversions on a hyperoctahedral group.

Key words: Fock space; Coxeter arcsine distribution; Coxeter groups of type B; orthogonal polynomials.

pdf (488 kb)   tex (31 kb)  

References

  1. Anshelevich M., Młotkowski W., Semigroups of distributions with linear Jacobi parameters, J. Theoret. Probab. 25 (2012), 1173-1206, arXiv:1001.1540.
  2. Armstrong D., Generalized non-crossing partitions and combinatorics of Coxeter groups, Mem. Amer. Math. Soc. 202 (2009), x+159 pages, arXiv:math.CO/0611106.
  3. Belinschi S.T., Shlyakhtenko D., Free probability of type $B$: analytic interpretation and applications, Amer. J. Math. 134 (2012), 193-234, arXiv:0903.2721.
  4. Biane P., Goodman F., Nica A., Non-crossing cumulants of type B, Trans. Amer. Math. Soc. 355 (2003), 2263-2303, arXiv:math.OA/0206167.
  5. Björner A., Brenti F., Combinatorics of Coxeter groups, Grad. Texts in Math., Vol. 231, Springer, New York, 2005.
  6. Blitvić N., The $(q,t)$-Gaussian process, J. Funct. Anal. 263 (2012), 3270-3305, arXiv:1111.6565.
  7. Bourbaki N., Lie groups and Lie algebras. Chapters 4-6, Elements of Mathematics (Berlin), Springer, Berlin, 2002.
  8. Bożejko M., Bryc W., On a class of free Lévy laws related to a regression problem, J. Funct. Anal. 236 (2006), 59-77, arXiv:math.OA/0410601.
  9. Bożejko M., Dołęga M., Ejsmont W., Gal S.R., Reflection length with two parameters in the asymptotic representation theory of type B/C and applications, J. Funct. Anal. 284 (2023), 109797, 47 pages, arXiv:2104.14530.
  10. Bożejko M., Ejsmont W., Hasebe T., Fock space associated to Coxeter groups of type B, J. Funct. Anal. 269 (2015), 1769-1795, arXiv:1411.7997.
  11. Bożejko M., Leinert M., Speicher R., Convolution and limit theorems for conditionally free random variables, Pacific J. Math. 175 (1996), 357-388, arXiv:funct-an/9410004.
  12. Bożejko M., Speicher R., An example of a generalized Brownian motion, Comm. Math. Phys. 137 (1991), 519-531.
  13. Bożejko M., Speicher R., Completely positive maps on Coxeter groups, deformed commutation relations, and operator spaces, Math. Ann. 300 (1994), 97-120, arXiv:funct-an/9408002.
  14. Bożejko M., Szwarc R., Algebraic length and Poincaré series on reflection groups with applications to representations theory, in Asymptotic Combinatorics with Applications to Mathematical Physics (St. Petersburg, 2001), Lecture Notes in Math., Vol. 1815, Springer, Berlin, 2003, 201-221.
  15. Bożejko M., Wysoczański J., Remarks on $t$-transformations of measures and convolutions, Ann. Inst. H. Poincaré Probab. Statist. 37 (2001), 737-761.
  16. Bożejko M., Yoshida H., Generalized $q$-deformed Gaussian random variables, in Quantum Probability, Banach Center Publ., Vol. 73, Polish Acad. Sci. Inst. Math., Warsaw, 2006, 127-140.
  17. Cébron G., Dahlqvist A., Gabriel F., Freeness of type B and conditional freeness for random matrices, arXiv:2205.01926.
  18. Cébron G., Gilliers N., Asymptotic cyclic-conditional freeness of random matrices, arXiv:2207.06249.
  19. Ejsmont W., Noncommutative characterization of free Meixner processes, Electron. Commun. Probab. 18 (2013), 22, 12 pages.
  20. Ejsmont W., Fock space associated with quadrabasic Hermite orthogonal polynomials, Studia Math. 270 (2023), 17-56, arXiv:2004.08538.
  21. Février M., Higher order infinitesimal freeness, Indiana Univ. Math. J. 61 (2012), 249-295, arXiv:1009.2389.
  22. Février M., Mastnak M., Nica A., Szpojankowski K., A construction which relates c-freeness to infinitesimal freeness, Adv. in Appl. Math. 110 (2019), 299-341, arXiv:1811.12205.
  23. Hora A., Obata N., Quantum probability and spectral analysis of graphs, Theoret. Math. Phys., Springer, Berlin, 2007.
  24. Humphreys J.E., Reflection groups and Coxeter groups, Cambridge Stud. Adv. Math., Vol. 29, Cambridge University Press, Cambridge, 1990.
  25. Popa M., Freeness with amalgamation, limit theorems and $S$-transform in non-commutative probability spaces of type B, Colloq. Math. 120 (2010), 319-329, arXiv:0709.0011.
  26. Reiner V., Non-crossing partitions for classical reflection groups, Discrete Math. 177 (1997), 195-222.
  27. Sloane N.J.A., The on-line encyclopedia of integer sequences, 2022, available at https://oeis.org.
  28. Stump C., $q,t$-Fuß-Catalan numbers for complex reflection groups, in 20th Annual International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2008), Discrete Math. Theor. Comput. Sci. Proc., AJ, Assoc. Discrete Math. Theor. Comput. Sci., Nancy, 2008, 295-306, arXiv:0806.2936.
  29. Stump C., $q,t$-Fuß-Catalan numbers for finite reflection groups, J. Algebraic Combin. 32 (2010), 67-97, arXiv:0901.1574.
  30. Wojakowski Ł., Probability interpolating between free and Boolean, Dissertationes Math. 446 (2007), 45 pages.

Previous article  Next article  Contents of Volume 19 (2023)