Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 19 (2023), 039, 32 pages      arXiv:2212.03870      https://doi.org/10.3842/SIGMA.2023.039

Double Quiver Gauge Theory and BPS/CFT Correspondence

Taro Kimura
Institut de Mathématiques de Bourgogne, Université de Bourgogne, CNRS, France

Received January 22, 2023, in final form May 28, 2023; Published online June 08, 2023

Abstract
We provide a formalism using the $q$-Cartan matrix to compute the instanton partition function of quiver gauge theory on various manifolds. Applying this formalism to eight dimensional setups, we introduce the notion of double quiver gauge theory characterized by a pair of quivers. We also explore the BPS/CFT correspondence in eight dimensions based on the $q$-Cartan matrix formalism.

Key words: quiver gauge theory; BPS/CFT correspondence; instanton moduli space; quiver variety; Calabi-Yau four-fold.

pdf (659 kb)   tex (40 kb)  

References

  1. Agarwal P., Kim J., Kim S., Sciarappa A., Wilson surfaces in M5-branes, J. High Energy Phys. 2018 (2018), no. 8, 119, 33 pages, arXiv:1804.09932.
  2. Alday L.F., Gaiotto D., Tachikawa Y., Liouville correlation functions from four-dimensional gauge theories, Lett. Math. Phys. 91 (2010), 167-197, arXiv:0906.3219.
  3. Belavin V., Feigin B., Super Liouville conformal blocks from $\mathcal{N}=2$ ${\rm SU}(2)$ quiver gauge theories, J. High Energy Phys. 2011 (2011), no. 7, 079, 17 pages, arXiv:1105.5800.
  4. Benini F., Bonelli G., Poggi M., Tanzini A., Elliptic non-Abelian Donaldson-Thomas invariants of $\mathbb{C}^3$, J. High Energy Phys. 2019 (2019), no. 7, 068, 41 pages, arXiv:1807.08482.
  5. Benini F., Eager R., Hori K., Tachikawa Y., Elliptic genera of 2d $\mathcal{N}=2$ gauge theories, Comm. Math. Phys. 333 (2015), 1241-1286, arXiv:1308.4896.
  6. Billò M., Ferro L., Frau M., Gallot L., Lerda A., Pesando I., Exotic instanton counting and heterotic/type ${\rm I}'$ duality, J. High Energy Phys. 2009 (2009), no. 7, 092, 44 pages, arXiv:0905.4586.
  7. Billò M., Frau M., Fucito F., Gallot L., Lerda A., Morales J.F., On the ${\rm D}(-1)/{\rm D}7$-brane systems, J. High Energy Phys. 2021 (2021), no. 4, 096, 45 pages, arXiv:2101.01732.
  8. Billò M., Frau M., Gallot L., Lerda A., Pesando I., Classical solutions for exotic instantons?, J. High Energy Phys. 2009 (2009), no. 3, 056, 39 pages, arXiv:0901.1666.
  9. Bonelli G., Fasola N., Tanzini A., Zenkevich Y., ADHM in 8d, coloured solid partitions and Donaldson-Thomas invariants on orbifolds, arXiv:2011.02366.
  10. Bonelli G., Maruyoshi K., Tanzini A., Instantons on ALE spaces and super Liouville conformal field theories, J. High Energy Phys. 2011 (2011), no. 8, 056, 9 pages, arXiv:1106.2505.
  11. Bonelli G., Maruyoshi K., Tanzini A., Gauge theories on ALE space and super Liouville correlation functions, Lett. Math. Phys. 101 (2012), 103-124, arXiv:1107.4609.
  12. Borisov D., Joyce D., Virtual fundamental classes for moduli spaces of sheaves on Calabi-Yau four-folds, Geom. Topol. 21 (2017), 3231-3311, arXiv:1504.00690.
  13. Cao Y., Kool M., Zero-dimensional Donaldson-Thomas invariants of Calabi-Yau 4-folds, Adv. Math. 338 (2018), 601-648, arXiv:1712.07347.
  14. Cao Y., Kool M., Monavari S., $K$-theoretic DT/PT correspondence for toric Calabi-Yau 4-folds, Comm. Math. Phys. 396 (2022), 225-264, arXiv:1906.07856.
  15. Córdova C., Shao S.H., An index formula for supersymmetric quantum mechanics, J. Singul. 15 (2016), 14-35, arXiv:1406.7853.
  16. Dijkgraaf R., Heidenreich B., Jefferson P., Vafa C., Negative branes, supergroups and the signature of spacetime, J. High Energy Phys. 2018 (2018), no. 2, 050, 62 pages, arXiv:1603.05665.
  17. Douglas M., Moore G., D-branes, quivers, and ALE instantons, arXiv:hep-th/9603167.
  18. Drukker N., Trancanelli D., A supermatrix model for $\mathcal{N}=6$ super Chern-Simons-matter theory, J. High Energy Phys. 2010 (2010), no. 2, 058, 21 pages, arXiv:0912.3006.
  19. Frenkel E., Reshetikhin N., Deformations of $\mathcal{W}$-algebras associated to simple Lie algebras, Comm. Math. Phys. 197 (1998), 1-32, arXiv:q-alg/9708006.
  20. Fucito F., Morales J.F., Poghossian R., Multi-instanton calculus on ALE spaces, Nuclear Phys. B 703 (2004), 518-536, arXiv:hep-th/0406243.
  21. Fujii S., Minabe S., A combinatorial study on quiver varieties, SIGMA 13 (2017), 052, 28 pages, arXiv:math.AG/0510455.
  22. Hanany A., Zaffaroni A., Issues on orientifolds: on the brane construction of gauge theories with ${\rm SO}(2n)$ global symmetry, J. High Energy Phys. 1999 (1999), no. 7, 009, 40 pages, arXiv:hep-th/9903242.
  23. Haouzi N., Kozçaz C., Supersymmetric Wilson loops, instantons, and deformed $\mathcal{W}$-algebras, Comm. Math. Phys. 393 (2022), 669-779, arXiv:1907.03838.
  24. Hori K., Kim H., Yi P., Witten index and wall crossing, J. High Energy Phys. 2015 (2015), no. 1, 124, 106 pages, arXiv:1407.2567.
  25. Hwang C., Kim J., Kim S., Park J., General instanton counting and 5d SCFT, J. High Energy Phys. 2015 (2015), no. 7, 063, 65 pages, arXiv:1406.6793.
  26. Kanno H., Quiver matrix model of ADHM type and BPS state counting in diverse dimensions, PTEP. Prog. Theor. Exp. Phys. 2020 (2020), 11B104, 22 pages, arXiv:2004.05760.
  27. Kapustin A., $D_n$ quivers from branes, J. High Energy Phys. 1998 (1998), no. 12, 015, 17 pages, arXiv:hep-th/9806238.
  28. Kazakov V.A., Kostov I.K., Nekrasov N., D-particles, matrix integrals and KP hierarchy, Nuclear Phys. B 557 (1999), 413-442, arXiv:hep-th/9810035.
  29. Kim H.-C., Line defects and 5d instanton partition functions, J. High Energy Phys. 2016 (2016), no. 3, 199, 16 pages, arXiv:1601.06841.
  30. Kimura T., Matrix model from $\mathcal{N}=2$ orbifold partition function, J. High Energy Phys. 2011 (2011), no. 9, 015, 35 pages, arXiv:1105.6091.
  31. Kimura T., $\beta$-ensembles for toric orbifold partition function, Prog. Theor. Phys. 127 (2012), 271-285, arXiv:1109.0004.
  32. Kimura T., Integrating over quiver variety and BPS/CFT correspondence, Lett. Math. Phys. 110 (2020), 1237-1255, arXiv:1910.03247.
  33. Kimura T., Instanton counting, quantum geometry and algebra, Math. Phys. Stud., Springer, Cham, 2021, arXiv:2012.11711.
  34. Kimura T., Pestun V., Fractional quiver W-algebras, Lett. Math. Phys. 108 (2018), 2425-2451, arXiv:1705.04410.
  35. Kimura T., Pestun V., Quiver elliptic W-algebras, Lett. Math. Phys. 108 (2018), 1383-1405, arXiv:1608.04651.
  36. Kimura T., Pestun V., Quiver W-algebras, Lett. Math. Phys. 108 (2018), 1351-1381, arXiv:1512.08533.
  37. Kimura T., Pestun V., Super instanton counting and localization, arXiv:1905.01513.
  38. Kimura T., Pestun V., Fractionalization of quiver variety and $qq$-character,in preparation.
  39. Kimura T., Zhu R.-D., Web construction of $ABCDEFG$ and affine quiver gauge theories, J. High Energy Phys. 2019 (2019), no. 9, 025, 57 pages, arXiv:1907.02382.
  40. Kronheimer P.B., Nakajima H., Yang-Mills instantons on ALE gravitational instantons, textitMath. Ann. 288 (1990), 263-307.
  41. Losev A., Nekrasov N., Shatashvili S., Issues in topological gauge theory, Nuclear Phys. B 534 (1998), 549-611, arXiv:hep-th/9711108.
  42. Losev A., Nekrassov N., Shatashvili S., Testing Seiberg-Witten solution, in Strings, Branes and Dualities (Cargèse, 1997), NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., Vol. 520, Kluwer Acad. Publ., Dordrecht, 1999, 359-372, arXiv:hep-th/9801061.
  43. Mariño M., Putrov P., Exact results in ABJM theory from topological strings, J. High Energy Phys. 2010 (2010), no. 6, 011, 21 pages, arXiv:0912.3074.
  44. Moore G., Nekrasov N., Shatashvili S., Integrating over Higgs branches, Comm. Math. Phys. 209 (2000), 97-121, arXiv:hep-th/9712241.
  45. Nakajima H., Instantons on ALE spaces, quiver varieties, and Kac-Moody algebras, Duke Math. J. 76 (1994), 365-416.
  46. Nakajima H., Quiver varieties and Kac-Moody algebras, Duke Math. J. 91 (1998), 515-560.
  47. Nakajima H., Weekes A., Coulomb branches of quiver gauge theories with symmetrizers, J. Eur. Math. Soc. (JEMS) 25 (2023), 203-230, arXiv:1907.06552.
  48. Nekrasov N., Seiberg-Witten prepotential from instanton counting, Adv. Theor. Math. Phys. 7 (2003), 831-864, arXiv:hep-th/0206161.
  49. Nekrasov N., On the BPS/CFT correspondence, Lecture at the University of Amsterdam String Theory Group Seminar, 2004.
  50. Nekrasov N., BPS/CFT correspondence: non-perturbative Dyson-Schwinger equations and $qq$-characters, J. High Energy Phys. 2016 (2016), no. 3, 181, 70 pages, arXiv:1512.05388.
  51. Nekrasov N., BPS/CFT correspondence II: instantons at crossroads, moduli and compactness theorem, Adv. Theor. Math. Phys. 21 (2017), 503-583, arXiv:1608.07272.
  52. Nekrasov N., BPS/CFT correspondence III: Gauge origami partition function and $qq$-characters, Comm. Math. Phys. 358 (2018), 863-894, arXiv:1701.00189.
  53. Nekrasov N., Magnificent four, Adv. Theor. Math. Phys. 24 (2020), 1171-1202, arXiv:1712.08128.
  54. Nekrasov N., Pestun V., Seiberg-Witten geometry of four dimensional $N=2$ quiver gauge theories, arXiv:1211.2240.
  55. Nekrasov N., Pestun V., Shatashvili S., Quantum geometry and quiver gauge theories, Comm. Math. Phys. 357 (2018), 519-567, arXiv:1312.6689.
  56. Nekrasov N., Piazzalunga N., Magnificent four with colors, Comm. Math. Phys. 372 (2019), 573-597, arXiv:1808.05206.
  57. Nieri F., Zenkevich Y., Quiver ${\rm W}_{\epsilon_1,\epsilon_2}$ algebras of 4D $\mathcal{N}=2$ gauge theories, J. Phys. A 53 (2020), 275401, 43 pages, arXiv:1912.09969.
  58. Nishioka T., Tachikawa Y., Central charges of para-Liouville and Toda theories from M-5-branes, Phys. Rev. D 84 (2011), 046009, 3 pages, arXiv:1106.1172.
  59. Pomoni E., Yan W., Zhang X., Tetrahedron instantons, Comm. Math. Phys. 393 (2022), 781-838, arXiv:2106.11611.
  60. Tong D., Wong K., Instantons, Wilson lines, and D-branes, Phys. Rev. D 91 (2015), 026007, 8 pages, arXiv:1410.8523.
  61. Wyllard N., $A_{N-1}$ conformal Toda field theory correlation functions from conformal $\mathcal{N}=2$ ${\rm SU}(N)$ quiver gauge theories, J. High Energy Phys. 2009 (2009), no. 11, 002, 22 pages, arXiv:0907.2189.

Previous article  Next article  Contents of Volume 19 (2023)