|
SIGMA 19 (2023), 038, 17 pages arXiv:2204.01445
https://doi.org/10.3842/SIGMA.2023.038
Contribution to the Special Issue on Non-Commutative Algebra, Probability and Analysis in Action
Shifted Substitution in Non-Commutative Multivariate Power Series with a View Toward Free Probability
Kurusch Ebrahimi-Fard a, Frédéric Patras b, Nikolas Tapia c and Lorenzo Zambotti d
a) Department of Mathematical Sciences, Norwegian University of Science and Technology, NO 7491 Trondheim, Norway
b) Université Côte d'Azur, CNRS, UMR 7351, Parc Valrose, 06108 Nice Cedex 02, France
c) Weierstraß-Institut Berlin and Technische Universität Berlin, Berlin, Germany
d) LPSM, Sorbonne Université, CNRS, Université Paris Cité, 4 Place Jussieu, 75005 Paris, France
Received April 05, 2022, in final form May 29, 2023; Published online June 08, 2023
Abstract
We study a particular group law on formal power series in non-commuting variables induced by their interpretation as linear forms on a suitable graded connected word Hopf algebra. This group law is left-linear and is therefore associated to a pre-Lie structure on formal power series. We study these structures and show how they can be used to recast in a group theoretic form various identities and transformations on formal power series that have been central in the context of non-commutative probability theory, in particular in Voiculescu's theory of free probability.
Key words: non-commutative probability theory; non-commutative power series; moments and cumulants; combinatorial Hopf algebra; pre-Lie algebra.
pdf (425 kb)
tex (28 kb)
References
- Anshelevich M., Appell polynomials and their relatives, Int. Math. Res. Not. 2004 (2004), 3469-3531, arXiv:math.CO/0311043.
- Anshelevich M., Appell polynomials and their relatives. II. Boolean theory, Indiana Univ. Math. J. 58 (2009), 929-968, arXiv:0712.4185.
- Anshelevich M., Appell polynomials and their relatives. III. Conditionally free theory, Illinois J. Math. 53 (2009), 39-66, arXiv:0803.4279.
- Anshelevich M., Free evolution on algebras with two states, J. Reine Angew. Math. 638 (2010), 75-101, arXiv:0803.4280.
- Arizmendi O., Hasebe T., Lehner F., Vargas C., Relations between cumulants in noncommutative probability, Adv. Math. 282 (2015), 56-92, arXiv:1408.2977.
- Baues H.J., The double bar and cobar constructions, Compositio Math. 43 (1981), 331-341.
- Brouder C., Runge-Kutta methods and renormalization, Eur. Phys. J. C 12 (2000), 521-534, arXiv:hep-th/9904014.
- Butcher J.C., B-series. Algebraic analysis of numerical methods, Springer Ser. Comput. Math., Vol. 55, Springer, Cham, 2021.
- Calaque D., Ebrahimi-Fard K., Manchon D., Two interacting Hopf algebras of trees: a Hopf-algebraic approach to composition and substitution of B-series, Adv. in Appl. Math. 47 (2011), 282-308, arXiv:0806.2238.
- Cartier P., Patras F., Classical Hopf algebras and their applications, Algebr. Appl., Vol. 29, Springer, Cham, 2021.
- Cayley A., A theorem on trees, Q. J. Math 23 (1889), 376-378.
- Chartier P., Hairer E., Vilmart G., Algebraic structures of B-series, Found. Comput. Math. 10 (2010), 407-427.
- Connes A., Kreimer D., Hopf algebras, renormalization and noncommutative geometry, Comm. Math. Phys. 199 (1998), 203-242, arXiv:hep-th/9808042.
- Ebrahimi-Fard K., Patras F., Cumulants, free cumulants and half-shuffles, Proc. A. 471 (2015), 20140843, 18 pages, arXiv:1409.5664.
- Ebrahimi-Fard K., Patras F., The splitting process in free probability theory, Int. Math. Res. Not. 2016 (2016), 2647-2676, arXiv:1502.02748.
- Ebrahimi-Fard K., Patras F., Monotone, free, and boolean cumulants: a shuffle algebra approach, Adv. Math. 328 (2018), 112-132, arXiv:1701.06152.
- Ebrahimi-Fard K., Patras F., Shuffle group laws: applications in free probability, Proc. Lond. Math. Soc. 119 (2019), 814-840, arXiv:1704.04942.
- Ebrahimi-Fard K., Patras F., Quasi-shuffle algebras in non-commutative stochastic calculus, in Geometry and Invariance in Stochastic Dynamics, Springer Proc. Math. Stat., Vol. 378, Springer, Cham, 2021, 89-112, arXiv:2004.06945.
- Ebrahimi-Fard K., Patras F., Tapia N., Zambotti L., Hopf-algebraic deformations of products and Wick polynomials, Int. Math. Res. Not. 2020 (2020), 10064-10099, arXiv:1710.00735.
- Ebrahimi-Fard K., Patras F., Tapia N., Zambotti L., Wick polynomials in noncommutative probability: a group-theoretical approach, Canad. J. Math. 74 (2022), 1673-1699, arXiv:2001.03808.
- Hairer E., Lubich C., Wanner G., Geometric numerical integration. Structure-preserving algorithms for ordinary differential equations, 2nd ed., Springer Ser. Comput. Math., Vol. 31, Springer, Berlin, 2006.
- Hasebe T., Saigo H., Joint cumulants for natural independence, Electron. Commun. Probab. 16 (2011), 491-506, arXiv:1005.3900.
- Hasebe T., Saigo H., The monotone cumulants, Ann. Inst. Henri Poincaré Probab. Stat. 47 (2011), 1160-1170, arXiv:0907.4896.
- Mingo J.A., Speicher R., Free probability and random matrices, Fields Inst. Monogr., Vol. 35, Springer, New York, 2017.
- Nica A., Speicher R., Lectures on the combinatorics of free probability, London Math. Soc. Lecture Note Ser., Vol. 335, Cambridge University Press, Cambridge, 2006.
- Voiculescu D., Free probability theory: random matrices and von Neumann algebras, in Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994), Birkhäuser, Basel, 1995, 227-241.
|
|