|
SIGMA 19 (2023), 037, 40 pages arXiv:2209.02227
https://doi.org/10.3842/SIGMA.2023.037
On $q$-Middle Convolution and $q$-Hypergeometric Equations
Yumi Arai and Kouichi Takemura
Department of Mathematics, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan
Received October 14, 2022, in final form May 19, 2023; Published online June 05, 2023
Abstract
The $q$-middle convolution was introduced by Sakai and Yamaguchi. In this paper, we reformulate $q$-integral transformations associated with the $q$-middle convolution. In particular, we discuss convergence of the $q$-integral transformations. As an application, we obtain $q$-integral representations of solutions to the variants of the $q$-hypergeometric equation by applying the $q$-middle convolution.
Key words: hypergeometric function; $q$-hypergeometric equation; middle convolution; $q$-integral.
pdf (567 kb)
tex (34 kb)
References
- Aomoto K., On the 3 fundamental problems concerning $q$-basic hypergeometric functions ($q$-difference equations, asymptotic behaviours and connection problem), in Proceedinds of Fifth Oka Symposium (March 18-19, 2006, Nara), Oka Mathematical Institute, Japan, 2006, 16 pages.
- Arai Y., $q$-deformation of middle convolution and its application to $q$-difference equations, Master's Thesis, Ochanomizu University, 2023.
- Dettweiler M., Reiter S., An algorithm of Katz and its application to the inverse Galois problem, J. Symbolic Comput. 30 (2000), 761-798.
- Dettweiler M., Reiter S., Middle convolution of Fuchsian systems and the construction of rigid differential systems, J. Algebra 318 (2007), 1-24.
- Fujii T., Special solutions of $q$-Heun equation by $q$-hypergeometric integral, Master's Thesis, Kobe University, 2022.
- Fujii T., Nobukawa T., Hypergeometric solutions for variants of the $q$-hypergeometric equation, arXiv:2207.12777.
- Gasper G., Rahman M., Basic hypergeometric series, 2nd ed., Encyclopedia Math. Appl., Vol. 96, Cambridge University Press, Cambridge, 2004.
- Haraoka Y., Linear differential equations in the complex domain, Lecture Notes in Math., Vol. 2271, Springer, Cham, 2020.
- Hatano N., Matsunawa R., Sato T., Takemura K., Variants of $q$-hypergeometric equation, Funkcial. Ekvac. 65 (2022), 159-190, arXiv:1910.12560.
- Katz N.M., Rigid local systems, Ann. of Math. Stud., Vol. 139, Princeton University Press, Princeton, NJ, 1996.
- Matsunawa R., Sato T., Takemura K., Variants of confluent $q$-hypergeometric equations, in Geometric and Harmonic Analysis on Homogeneous Spaces and Applications, Springer Proc. Math. Stat., Vol. 366, Springer, Cham, 2021, 161-180, arXiv:2005.13223.
- Mimachi K., Connection problem in holonomic $q$-difference system associated with a Jackson integral of Jordan-Pochhammer type, Nagoya Math. J. 116 (1989), 149-161.
- Sakai H., Yamaguchi M., Spectral types of linear $q$-difference equations and $q$-analog of middle convolution, Int. Math. Res. Not. 2017 (2017), 1975-2013, arXiv:1410.3674.
- Sasaki S., Takagi S., Takemura K., $q$-middle convolution and $q$-Painlevé equation, SIGMA 18 (2022), 056, 21 pages, arXiv:2201.03960.
- Whittaker E., Watson G., A course of modern analysis, 4th ed., Cambridge Math. Lib., Cambridge University Press, New York, 1962.
|
|