|
SIGMA 19 (2023), 036, 13 pages arXiv:1805.04884
https://doi.org/10.3842/SIGMA.2023.036
Explicit Central Elements of $U_q(\mathfrak{gl}(N+1))$
Jeffrey Kuan a and Keke Zhang b
a) Department of Mathematics, Texas A&M University, Mailstop 3368, College Station, TX 77843-3368, USA
b) Perimeter Institute, 31 Caroline St. N, Waterloo, ON, N2L 2Y5, Canada
Received August 25, 2022, in final form May 19, 2023; Published online June 03, 2023
Abstract
By using Drinfeld's central element construction and fusion of $R$-matrices, we construct central elements of the quantum group $U_q(\mathfrak{gl}(N+1))$. These elements are explicitly written in terms of the generators.
Key words: quantum groups; Harish-Chandra isomorphism; central elements.
pdf (439 kb)
tex (19 kb)
References
- Arnaudon D., Bauer M., Polynomial relations in the centre of $\mathcal{U}_q(\mathfrak{sl}(N))$, Lett. Math. Phys. 30 (1994), 251-257, arXiv:hep-th/9310030.
- Carinci G., Giardinà C., Redig F., Sasamoto T., Asymmetric stochastic transport models with $\mathcal{U}_q(\mathfrak{su}(1,1))$ symmetry, J. Stat. Phys. 163 (2016), 239-279, arXiv:1507.01478.
- Carinci G., Giardinà C., Redig F., Sasamoto T., A generalized asymmetric exclusion process with $\mathcal{U}_q(\mathfrak{sl}_2)$ stochastic duality, Probab. Theory Related Fields 166 (2016), 887-933, arXiv:1407.3367.
- Carter R.W., Finite groups of Lie type: conjugacy classes and complex characters, Pure Appl. Math. (New York), John Wiley & Sons, Inc., New York, 1985.
- Dai Y., Explicit generators of the centre of the quantum group, Commun. Math. Stat., to appear, arXiv:1912.04021.
- Drinfeld V.G., Almost cocommutative Hopf algebras, Leningrad Math. J. 1 (1990), 321-342.
- Faddeev L.D., Reshetikhin N.Yu., Takhtajan L.A., Quantization of Lie groups and Lie algebras, in Algebraic Analysis, Vol. I, Vol. 1, Academic Press, Boston, MA, 1988, 129-139.
- Gould M.D., Zhang R.B., Bracken A.J., Generalized Gel'fand invariants and characteristic identities for quantum groups, J. Math. Phys. 32 (1991), 2298-2303.
- Jimbo M., A $q$-analogue of $U(\mathfrak{gl}(N+1))$, Hecke algebra, and the Yang-Baxter equation, Lett. Math. Phys. 11 (1986), 247-252.
- Khoroshkin S.M., Tolstoy V.N., Universal $R$-matrix for quantized (super)algebras, Comm. Math. Phys. 141 (1991), 599-617.
- Kirillov A.N., Reshetikhin N., $q$-Weyl group and a multiplicative formula for universal $R$-matrices, Comm. Math. Phys. 134 (1990), 421-431.
- Kuan J., A (2+1)-dimensional Gaussian field as fluctuations of quantum random walks on quantum groups, arXiv:1601.04402.
- Kuan J., Stochastic duality of ASEP with two particle types via symmetry of quantum groups of rank two, J. Phys. A 49 (2016), 115002, 29 pages, arXiv:1504.07173.
- Kuan J., A multi-species ${\rm ASEP}(q,j)$ and $q$-TAZRP with stochastic duality, Int. Math. Res. Not. 2018 (2018), 5378-5416, arXiv:1605.00691.
- Kuniba A., Mangazeev V.V., Maruyama S., Okado M., Stochastic $R$ matrix for $U_q\big(A_n^{(1)}\big)$, Nuclear Phys. B 913 (2016), 248-277, arXiv:1604.08304.
- Li J., The quantum Casimir operators of ${\rm U}_q(\mathfrak{gl}_n)$ and their eigenvalues, J. Phys. A 43 (2010), 345202, 9 pages, arXiv:1003.3729.
- Li L., Xia L., Zhang Y., On the centers of quantum groups of $A_n$-type, Sci. China Math. 61 (2018), 287-294.
- Lusztig G., Canonical bases arising from quantized enveloping algebras, J. Amer. Math. Soc. 3 (1990), 447-498.
- Mudrov A., Quantum conjugacy classes of simple matrix groups, Comm. Math. Phys. 272 (2007), 635-660, arXiv:math.QA/0412538.
- Rosso M., Représentations irréductibles de dimension finie du $q$-analogue de l'algèbre enveloppante d'une algèbre de Lie simple, C. R. Acad. Sci. Paris Sér. I Math. 305 (1987), 587-590.
- Tanisaki T., Killing forms, Harish-Chandra isomorphisms, and universal $R$-matrices for quantum algebras, Internat. J. Modern Phys. A 7 (1992), supp. 01b, 941-961.
- Xi N.H., Root vectors in quantum groups, Comment. Math. Helv. 69 (1994), 612-639.
- Zhang R.B., Gould M.D., Bracken A.J., Generalized Gel'fand invariants of quantum groups, J. Phys. A 24 (1991), 937-943.
- Zhang R.B., Gould M.D., Bracken A.J., Quantum group invariants and link polynomials, Comm. Math. Phys. 137 (1991), 13-27.
|
|