Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 19 (2023), 035, 16 pages      arXiv:2208.07627      https://doi.org/10.3842/SIGMA.2023.035

From pp-Waves to Galilean Spacetimes

José Figueroa-O'Farrill a, Ross Grassie b and Stefan Prohazka a
a) Maxwell Institute and School of Mathematics, The University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh EH9 3FD, Scotland, UK
b) Laboratory for Foundations of Computer Science, School of Informatics, The University of Edinburgh, Informatics Forum, 10 Crichton Street, Edinburgh EH8 9AB, Scotland, UK

Received October 27, 2022, in final form May 22, 2023; Published online June 03, 2023

Abstract
We exhibit all spatially isotropic homogeneous Galilean spacetimes of dimension $(n+1) \geq 4$, including the novel torsional ones, as null reductions of homogeneous pp-wave spacetimes. We also show that the pp-waves are sourced by pure radiation fields and analyse their global properties.

Key words: pp-waves; Galilean spacetimes; null reduction.

pdf (476 kb)   tex (26 kb)  

References

  1. Bacry H., Lévy-Leblond J.M., Possible kinematics, J. Math. Phys. 9 (1968), 1605-1614.
  2. Bekaert X., Morand K., Connections and dynamical trajectories in generalised Newton-Cartan gravity I. An intrinsic view, J. Math. Phys. 57 (2016), 022507, 44 pages, arXiv:1412.8212.
  3. Bekaert X., Morand K., Connections and dynamical trajectories in generalised Newton-Cartan gravity. II. An ambient perspective, J. Math. Phys. 59 (2018), 072503, 41 pages, arXiv:1505.03739.
  4. Bizoń P., Evnin O., Ficek F., A nonrelativistic limit for AdS perturbations, J. High Energy Phys. 2018 (2018), no. 12, 113, 19 page, arXiv:1810.10574.
  5. Brinkmann H.W., Einstein spaces which are mapped conformally on each other, Math. Ann. 94 (1925), 119-145.
  6. Christensen M.H., Hartong J., Obers N.A., Rollier B., Torsional Newton-Cartan geometry and Lifshitz Holography, Phys. Rev. D 89 (2014), 061901, 5 pages, arXiv:1311.4794.
  7. Duval C., Burdet G., Künzle H.P., Perrin M., Bargmann structures and Newton-Cartan theory, Phys. Rev. D 31 (1985), 1841-1853.
  8. Ehlers J., Kundt W., Exact solutions of the gravitational field equations, in Gravitation: An Introduction to Current Research, Wiley, New York, 1962, 49-101.
  9. Figueroa-O'Farrill J., On the intrinsic torsion of spacetime structures, arXiv:2009.01948.
  10. Figueroa-O'Farrill J., Görmez C., Van den Bleeken D., Particle dynamics on torsional Galilean spacetimes, SciPost Phys. 14 (2023), 059, 32 pages, arXiv:2208.07611.
  11. Figueroa-O'Farrill J., Grassie R., Prohazka S., Geometry and BMS Lie algebras of spatially isotropic homogeneous spacetimes, J. High Energy Phys. 2019 (2019), no. 8, 119, 92 pages, arXiv:1905.00034.
  12. Figueroa-O'Farrill J., Grassie R., Prohazka S., Lifshitz symmetry: Lie algebras, spacetimes and particles, SciPost Phys. 14 (2023), 035, 42 pages, arXiv:2206.11806.
  13. Figueroa-O'Farrill J., Have E., Prohazka S., Salzer J., Carrollian and celestial spaces at infinity, J. High Energy Phys. 2022 (2022), no. 9, 007, 52 pages, arXiv:2112.03319.
  14. Figueroa-O'Farrill J., Prohazka S., Spatially isotropic homogeneous spacetimes, J. High Energy Phys. 2019 (2019), no. 1, 229, 78 pages, arXiv:1809.01224.
  15. Figueroa-O'Farrill J.M., Higher-dimensional kinematical Lie algebras via deformation theory, J. Math. Phys. 59 (2018), 061702, 21 pages, arXiv:1711.07363.
  16. Figueroa-O'Farrill J.M., Kinematical Lie algebras via deformation theory, J. Math. Phys. 59 (2018), 061701, 29 pages, arXiv:1711.06111.
  17. Gibbons G.W., Patricot C.E., Newton-Hooke spacetimes, Hpp-waves and the cosmological constant, Classical Quantum Gravity 20 (2003), 5225-5239, arXiv:hep-th/0308200.
  18. Julia B., Nicolai H., Null-Killing vector-dimensional reduction and Galilean geometrodynamics, Nuclear Phys. B 439 (1995), 291-323, arXiv:hep-th/9412002.
  19. Künzle H.P., Galilei and Lorentz structures on space-time: comparison of the corresponding geometry and physics, Ann. Inst. H. Poincaré Sect. A 17 (1972), 337-362.
  20. Maxfield H., Zahraee Z., Holographic solar systems and hydrogen atoms: non-relativistic physics in AdS and its CFT dual, J. High Energy Phys. 2022 (2022), no. 11, 093, 66 pages, arXiv:2207.00606.
  21. Stephani H., Kramer D., MacCallum M., Hoenselaers C., Herlt E., Exact solutions of Einstein's field equations, Cambridge Monogr. Math. Phys., Cambridge University Press, Cambridge, 2003.
  22. Susskind L., De Sitter holography: fluctuations, anomalous symmetry, and wormholes, Universe 7 (2021), 464, arXiv:2106.03964.

Previous article  Next article  Contents of Volume 19 (2023)