Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 19 (2023), 034, 13 pages      arXiv:2211.02413      https://doi.org/10.3842/SIGMA.2023.034
Contribution to the Special Issue on Topological Solitons as Particles

Stable Kink-Kink and Metastable Kink-Antikink Solutions

Chris Halcrow and Egor Babaev
Department of Physics, KTH-Royal Institute of Technology, Stockholm, SE-10691 Sweden

Received February 21, 2023, in final form May 23, 2023; Published online June 01, 2023

Abstract
We construct and study two kink theories. One contains a static 2-kink configuration with controllable binding energy. The other contains a locally stable non-topological solution, which we call a lavíon. The new models are 1D analogs of non-integrable systems in higher dimensions such as the Skyrme model and realistic vortex systems. To help construct the theories, we derive a simple expression for the interaction energy between two kinks.

Key words: solitons; defects.

pdf (813 kb)   tex (430 kb)  

References

  1. Adam C., Oles K., Romanczukiewicz T., Wereszczynski A., Spectral walls in soliton collisions, Phys. Rev. Lett. 122 (2019), 241601, 5 pages, arXiv:1903.12100.
  2. Adam C., Oles K., Romanczukiewicz T., Wereszczynski A., Kink-antikink collisions in a weakly interacting $\phi^4$ model, Phys. Rev. E 102 (2020), 062214, 14 pages, arXiv:1912.09371.
  3. Adam C., Oles K., Romanczukiewicz T., Wereszczynski A., Zakrzewski W.J., Spectral walls in multifield kink dynamics, J. High Energy Phys. 2021 (2021), no. 8, 147, 25 pages, arXiv:2105.14771.
  4. Alonso-Izquierdo A., Non-topological kink scattering in a two-component scalar field theory model, Commun. Nonlinear Sci. Numer. Simul. 85 (2020), 105251, 17 pages, arXiv:1906.05040.
  5. Alonso-Izquierdo A., González León M.A., Martín Vaquero J., de la Torre Mayado M., Kink scattering in a generalized Wess-Zumino model, Commun. Nonlinear Sci. Numer. Simul. 103 (2021), 106011, 16 pages, arXiv:2105.05750.
  6. Alonso-Izquierdo A., Leon M.A.G., Guilarte J.M., BPS and non-BPS kinks in a massive nonlinear $\mathbb{S}^2$-sigma model, Phys. Rev. D 79 (2009), 125003, 16 pages, arXiv:0903.0593.
  7. Anninos P., Oliveira S., Matzner R.A., Fractal structure in the scalar $\lambda(\varphi^2- 1)^2$ theory, Phys. Rev. D 44 (1991), 1147-1160.
  8. Babaev E., Speight M., Semi-Meissner state and neither type-I nor type-II superconductivity in multicomponent superconductors, Phys. Rev. B 72 (2005), 180502, 4 pages, arXiv:cond-mat/0411681.
  9. Barkman M., Samoilenka A., Winyard T., Babaev E., Ring solitons and soliton sacks in imbalanced fermionic systems, Phys. Rev. Research 2 (2020), 043282, 9 pages, arXiv:2005.03738.
  10. Barton-Singer B., Schroers B.J., Stability and asymptotic interactions of chiral magnetic skyrmions in a tilted magnetic field, arXiv:2211.08017.
  11. Bazeia D., Campos J.G.F., Mohammadi A., Resonance mediated by fermions in kink-antikink collisions, J. High Energy Phys. 2022 (2022), no. 12, 085, 19 pages, arXiv:2208.13261.
  12. Bazeia D., Nascimento J.R.S., Ribeiro R.F., Toledo D., Soliton stability in systems of two real scalar fields, J. Phys. A 30 (1997), 8157-8166, arXiv:hep-th/9705224.
  13. Cahill K.E., Comtet A., Glauber R.J., Mass formulas for static solitons, Phys. Lett. B 64 (1976), 283-285.
  14. Campbell D.K., Schonfeld J.F., Wingate C.A., Resonance structure in kink-antikink interactions in $\varphi^4$ theory, Phys. D 9 (1983), 1-32.
  15. Carlström J., Garaud J., Babaev E., Semi-Meissner state and nonpairwise intervortex interactions in type-1.5 superconductors, Phys. Rev. B 84 (2011), 134515, 11 pages.
  16. Catalan G., Seidel J., Ramesh R., Scott J.F., Domain wall nanoelectronics, Rev. Modern Phys. 84 (2012), 119-156.
  17. Danisch S., Krumbiegel J., Makie.jl: Flexible high-performance data visualization for Julia, J. Open Source Softw. 6 (2021), 3349, 5 pages.
  18. Dorey P., Mersh K., Romanczukiewicz T., Shnir Y., Kink-antikink collisions in the $\phi^6$ model, Phys. Rev. Lett. 107 (2011), 091602, arXiv:1101.5951.
  19. Dorey P., Romańczukiewicz T., Resonant kink-antikink scattering through quasinormal modes, Phys. Lett. B 779 (2018), 117-123, arXiv:1712.10235.
  20. Eto M., Fujimori T., Nitta M., Ohashi K., Sakai N., Domain walls with non-Abelian clouds, Phys. Rev. D 77 (2008), 125008, arXiv:0802.3135.
  21. Evslin J., Manifestly finite derivation of the quantum kink mass, J. High Energy Phys. 2019 (2019), no. 11, 161, 31 pages, arXiv:1908.06710.
  22. Evslin J., The two-loop $\phi^4$ kink mass, Phys. Lett. B 822 (2021), 136628, 4 pages, arXiv:2109.05852.
  23. Evslin J., Halcrow C., Romańczukiewicz T., Wereszczyński A., Spectral walls at one loop, Phys. Rev. D 105 (2022), 125002, 22 pages, arXiv:2202.08249.
  24. Feist D.T.J., Interactions of $B=4$ skyrmions, J. High Energy Phys. 2012 (2012), no. 2, 100, 25 pages, arXiv:1112.2119.
  25. Gani V.A., Marjaneh A.M., Saadatmand D., Multi-kink scattering in the double sine-Gordon model, Eur. Phys. J. C 79 (2019), 620, 12 pages, arXiv:1901.07966.
  26. Halavanau A., Romanczukiewicz T., Shnir Y., Resonance structures in coupled two-component $\phi^4$ model, Phys. Rev. D 86 (2012), 085027, 19 pages, arXiv:1206.4471.
  27. Halcrow C.J., Vibrational quantisation of the $B=7$ skyrmion, Nuclear Phys. B 904 (2016), 106-123, arXiv:1511.00682.
  28. Manton N.S., An effective Lagrangian for solitons, Nuclear Phys. B 150 (1979), 397-412.
  29. Manton N.S., Topology in the Weinberg-Salam theory, Phys. Rev. D 28 (1983), 2019-2026.
  30. Manton N.S., The inevitability of sphalerons in field theory, Philos. Trans. Roy. Soc. A 377 (2019), 20180327, 13 pages, arXiv:1903.11573.
  31. Manton N.S., Oleś K., Romańczukiewicz T., Wereszczyński A., Collective coordinate model of kink-antikink collisions in $\phi^4$ theory, Phys. Rev. Lett. 127 (2021), 071601, 5 pages, arXiv:2106.05153.
  32. Montonen C., On solitons with an Abelian charge in scalar field theories:(I) Classical theory and Bohr-Sommerfeld quantization, Nuclear Phys. B 112 (1976), 349-357.
  33. Moradi Marjaneh A., Gani V.A., Saadatmand D., Dmitriev S.V., Javidan K., Multi-kink collisions in the $\phi^6$ model, J. High Energy Phys. 2017 (2017), no. 7, 028, 22 pages, arXiv:1704.08353.
  34. Parkin S.S.P., Hayashi M., Thomas L., Magnetic domain-wall racetrack memory, Science 320 (2008), 190-194.
  35. Portugues R., Townsend P.K., Intersoliton forces in the Wess-Zumino model, Phys. Lett. B 530 (2002), 227-234, arXiv:hep-th/0112077.
  36. Rackauckas C., Nie Q., DifferentialEquations.jl - a performant and feature-rich ecosystem for solving differential equations in Julia, J. Open Res. Softw. 5 (2017), 15, 10 pages.
  37. Rajaraman R., Solitons of coupled scalar field theories in two dimensions, Phys. Rev. Lett. 42 (1979), 200-204.
  38. Sarker S., Trullinger S.E., Bishop A.R., Solitary-wave solution for a complex one-dimensional field, Phys. Lett. A 59 (1976), 255-258.
  39. Schroers B. J., Dynamics of moving and spinning Skyrmions, Z. Phys. C 61 (1994), 479-494, arXiv:hep-ph/9308236.
  40. Sharma P., Zhang Q., Sando D., Lei C.H., Liu Y., Li J., Nagarajan V., Seidel J., Nonvolatile ferroelectric domain wall memory, Sci. Adv. 3 (2017), e1700512, 8 pages.
  41. Shifman M.A., Voloshin M., Degenerate domain wall solutions in supersymmetric theories, Phys. Rev. D 57 (1998), 2590-2598, arXiv:hep-th/9709137.
  42. Sugiyama T., Kink-antikink collisions in the two-dimensional $\varphi^4$ model, Prog. Theor. Phys. 61 (1979), 1550-1563.
  43. Taubes C.H., The existence of a nonminimal solution to the ${\rm SU}(2)$ Yang-Mills-Higgs equations on ${\mathbb R}^{3}$. I, Comm. Math. Phys. 86 (1982), 257-298.
  44. Walliser H., Holzwarth G., The Casimir energy of skyrmions in the (2+1)-dimensional ${\rm O}(3)$ model, Phys. Rev. B 61 (2000), 2819, arXiv:hep-ph/9907492.

Previous article  Next article  Contents of Volume 19 (2023)