Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 19 (2023), 032, 73 pages      arXiv:1307.1858      https://doi.org/10.3842/SIGMA.2023.032

Derivations and Central Extensions of Symmetric Modular Lie Algebras and Superalgebras (with an Appendix by Andrey Krutov)

Sofiane Bouarroudj a, Pavel Grozman b, Alexei Lebedev c and Dimitry Leites ad
a) New York University Abu Dhabi, Division of Science and Mathematics, P.O. Box 129188, United Arab Emirates
b) Deceased
c) Equa Simulation AB, Stockholm, Sweden
d) Department of Mathematics, University of Stockholm, SE-106 91 Stockholm, Sweden

Received November 16, 2016, in final form February 02, 2023; Published online May 29, 2023

Abstract
Over algebraically closed fields of positive characteristic, for simple Lie (super)algebras, and certain Lie (super)algebras close to simple ones, with symmetric root systems (such that for each root, there is minus it of the same multiplicity) and of ranks less than or equal to 8—most needed in an approach to the classification of simple vectorial Lie superalgebras (i.e., Lie superalgebras realized by means of vector fields on a supermanifold),—we list the outer derivations and nontrivial central extensions. When the conjectural answer is clear for the infinite series, it is given for any rank. We also list the outer derivations and nontrivial central extensions of one series of non-symmetric (except when considered in characteristic 2), namely periplectic, Lie superalgebras—the one that preserves the nondegenerate symmetric odd bilinear form, and of the Lie algebras obtained from them by desuperization. We also list the outer derivations and nontrivial central extensions of an analog of the rank 2 exceptional Lie algebra discovered by Shen Guangyu. Several results indigenous to positive characteristic are of particular interest being unlike known theorems for characteristic 0, some results are, moreover, counterintuitive.

Key words: modular Lie superalgebra; derivation; central extension.

pdf (848 kb)   tex (70 kb)  

References

  1. Albuquerque H., Barreiro E., Benayadi S., Quadratic Lie superalgebras with a reductive even part, J. Pure Appl. Algebra 213 (2009), 724-731.
  2. Albuquerque H., Barreiro E., Benayadi S., Odd-quadratic Lie superalgebras, J. Geom. Phys. 60 (2010), 230-250.
  3. Benayadi S., Bouarroudj S., Double extensions of Lie superalgebras in characteristic $2$ with nondegenerate invariant supersymmetric bilinear form, J. Algebra 510 (2018), 141-179, arXiv:1707.00970.
  4. Benayadi S., Bouarroudj S., Hajli M., Double extensions of restricted Lie (super)algebras, Arnold Math. J. 6 (2020), 231-269, arXiv:1810.03086.
  5. Benkart G., Gregory T., Premet A., The recognition theorem for graded Lie algebras in prime characteristic, Mem. Amer. Math. Soc. 197 (2009), xii+145 pages, arXiv:math.RA/0508373.
  6. Bernstein J., Leites D., Molotkov V., Shander V., Seminar on supersymmetries, Vol. 1, Algebra and calculus: main facts, MCCME, Moscow, 2011.
  7. Block R.E., Wilson R.L., Classification of the restricted simple Lie algebras, J. Algebra 114 (1988), 115-259.
  8. Bouarroudj S., Grozman P., Lebedev A., Leites D., Divided power (co)homology. Presentations of simple finite dimensional modular Lie superalgebras with Cartan matrix, Homology Homotopy Appl. 12 (2010), 237-278, arXiv:0911.0243.
  9. Bouarroudj S., Grozman P., Lebedev A., Leites D., Shchepochkina I., New simple Lie algebras in characteristic $2$, Int. Math. Res. Not. 2016 (2016), 5695-5726, arXiv:1307.1551.
  10. Bouarroudj S., Grozman P., Lebedev A., Leites D., Shchepochkina I., Simple vectorial Lie algebras in characteristic $2$ and their superizations, SIGMA 16 (2020), 089, 101 pages, arXiv:1510.07255.
  11. Bouarroudj S., Grozman P., Leites D., New simple modular Lie superalgebras as generalized prolongations, Funct. Anal. Appl. 42 (2008), 161-168, arXiv:0704.0130.
  12. Bouarroudj S., Grozman P., Leites D., Classification of finite dimensional modular Lie superalgebras with indecomposable Cartan matrix, SIGMA 5 (2009), 060, 63 pages, arXiv:0710.5149.
  13. Bouarroudj S., Grozman P., Leites D., Deformations of symmetric simple modular Lie algebras and Lie superalgebras, SIGMA 19 (2023), 031, 66 pages, arXiv:0807.3054
  14. Bouarroudj S., Krutov A., Lebedev A., Leites D., Shchepochkina I., Restricted simple Lie (super)algebras in characteristic $3$, Funct. Anal. Appl. 52 (2018), 49-52, arXiv:1809.08582.
  15. Bouarroudj S., Krutov A., Leites D., Shchepochkina I., Non-degenerate invariant (super)symmetric bilinear forms on simple Lie (super)algebras, Algebr. Represent. Theory 21 (2018), 897-941, arXiv:1806.05505.
  16. Bouarroudj S., Lebedev A., Leites D., Shchepochkina I., Lie algebra deformations in characteristic $2$, Math. Res. Lett. 22 (2015), 353-402, arXiv:1301.2781.
  17. Bouarroudj S., Lebedev A., Leites D., Shchepochkina I., Classification of simple Lie superalgebras in characteristic $2$, Int. Math. Res. Not. 2023 (2023), 54-94, arXiv:1407.1695.
  18. Bouarroudj S., Lebedev A., Vagemann F., Deformations of the Lie algebra $\mathfrak{o}(5)$ in characteristics $3$ and $2$, Math. Notes 89 (2011), 777-791, arXiv:0909.3572.
  19. Bouarroudj S., Leites D., Simple Lie superalgebras and nonintegrable distributions in characteristic $p$, J. Math. Sci. 141 (2007), 1390-1398, arXiv:math.RT/0606682.
  20. Bouarroudj S., Leites D., Lozhechnyk O., Shang J., The roots of exceptional modular Lie superalgebras with Cartan matrix, Arnold Math. J. 6 (2020), 63-118, arXiv:1904.09578.
  21. Bouarroudj S., Leites D., Shang J., Computer-aided study of double extensions of restricted lie superalgebras preserving the nondegenerate closed $2$-forms in characteristic $2$, Exp. Math. 31 (2022), 676-688, arXiv:1904.09579.
  22. Brown G., Families of simple Lie algebras of characteristic two, Comm. Algebra 23 (1995), 941-954.
  23. Chebochko N.G., Deformations of classical Lie algebras with a homogeneous root system in characteristic two. I, Sb. Math. 196 (2005), 1371-1402.
  24. Dzhumadil'daev A.S., On the cohomology of modular Lie algebras, Math. USSR Sb. 47 (1984), 127-143.
  25. Dzhumadil'daev A.S., Central extensions of Zassenhaus algebra and their irreducible representations, Math. USSR Sb. 54 (1986), 457-474.
  26. Dzhumadil'daev A.S., Symmetric (co)homologies of Lie algebras, C. R. Acad. Sci. Paris Sér. I Math. 324 (1997), 497-502.
  27. Dzhumadil'daev A.S., Ibraev Sh.Sh., Nonsplit extensions of modular Lie algebras of rank $2$, Homology Homotopy Appl. 4 (2002), 141-163.
  28. Dzhumadil'daev A.S., Zusmanovich P., Commutative $2$-cocycles on Lie algebras, J. Algebra 324 (2010), 732-748, arXiv:0907.4780.
  29. Eick B., Some new simple Lie algebras in characteristic $2$, J. Symbolic Comput. 45 (2010), 943-951.
  30. Frohardt D.E., Griess Jr. R.L., Automorphisms of modular Lie algebras, Nova J. Algebra Geom. 1 (1992), 339-345.
  31. Grishkov A., Zusmanovich P., Deformations of current Lie algebras. I. Small algebras in characteristic $2$, J. Algebra 473 (2017), 513-544, arXiv:1410.3645.
  32. Grozman P., SuperLie, 2013, http://www.equaonline.com/math/SuperLie.
  33. Grozman P., Leites D., Structures of $G(2)$ type and nonintegrable distributions in characteristic $p$, Lett. Math. Phys. 74 (2005), 229-262, arXiv:math.RT/0509400.
  34. Ibraev Sh.Sh., On central extensions of classical Lie algebras, Sib. Electron. Math. Rep. 10 (2013), 450-453.
  35. Ibraev Sh.Sh., On the first cohomology of an algebraic group and its Lie algebra in positive characteristic, Math. Notes 96 (2014), 491-498.
  36. Iyer U.N., Lebedev A., Leites D., Prolongs of (ortho-)orthogonal Lie (super)algebras in characteristic $2$, J. Nonlinear Math. Phys. 17 (2010), 253-309.
  37. Kac V.G., Corrections to: ''Exponentials in Lie algebras of characteristic $p$'' (Izv. Math. 35 (1971), 762-788), Izv. Math. 45 (1995), 229.
  38. Kondrateva A.V., Non-alternating Hamiltonian Lie algebras in three variables, arXiv:2101.00398.
  39. Kondrateva A.V., Kuznetsov M.I., Chebochko N.G., Non-alternating Hamiltonian Lie algebras in characteristic $2$. I, arXiv:1812.11213.
  40. Kostrikin A.I., The beginnings of modular Lie algebra theory, in Group Theory, Algebra, and Number Theory (Saarbrücken, 1993), De Gruyter, Berlin, 1996, 13-52.
  41. Kostrikin A.I., Dzhumadil'daev A.S., Modular Lie algebras: new trends, in Algebra (Moscow, 1998), De Gruyter, Berlin, 2000, 181-203.
  42. Krutov A., Lebedev A., On gradings modulo $2$ of simple Lie algebras in characteristic $2$, SIGMA 14 (2018), 130, 27 pages, arXiv:1711.00638.
  43. Krutov A., Lebedev A., Leites D., Shchepochkina I., Nondegenerate invariant symmetric bilinear forms on simple Lie superalgebras in characteristic $2$, Linear Algebra Appl. 649 (2022), 1-21, arXiv:2102.11653.
  44. Krutov A., Leites D., Shang J., The Duflo-Serganova homology for exceptional modular Lie superalgebras with indecomposable Cartan matrix, arXiv:2008.12033.
  45. Lebedev A., Simple modular Lie superalgebras, Ph.D. Thesis, Leipzig University, 2008.
  46. Lebedev A., Analogs of the orthogonal, Hamiltonian, Poisson, and contact Lie superalgebras in characteristic $2$, J. Nonlinear Math. Phys. 17 (2010), 217-251.
  47. Lebedev A., Leites D., On realizations of the Steenrod algebras, J. Prime Res. Math. 2 (2006), 101-112.
  48. Leites D., Towards classification of simple finite dimensional modular Lie superalgebras, J. Prime Res. Math. 3 (2007), 101-110, arXiv:0710.5638.
  49. Leites D., Shchepochkina I.M., Classification of the simple Lie superalgebras of vector fields, Preprint MPIM-2003-28, 2003, aviable at http://www.mpim-bonn.mpg.de/preblob/2178.
  50. Melikyan H., Zusmanovich P., Melikyan algebra is a deformation of a Poisson algebra, J. Phys. Conf. Ser. 532 (2014), 012019, 5 pages, arXiv:1401.2566.
  51. Neeb K.-H., Wagemann F., The second cohomology of current algebras of general Lie algebras, Canad. J. Math. 60 (2008), 892-922, arXiv:math.RA/0511260.
  52. Permiakov D., Derivations of classical Lie algebras over the field of characteristic $2$, Vest. Lobachevsky State Univ. Nizhni Novgorod 1 (2005), 123-134.
  53. Shchepochkina I., How to realize a Lie algebra by vector fields, Theoret. and Math. Phys. 147 (2006), 821-838, arXiv:math.RT/0509472.
  54. Shen G.Y., Variations of the classical Lie algebra $G_2$ in low characteristics, Nova J. Algebra Geom. 2 (1993), 217-243.
  55. Skryabin S.M., Classification of Hamiltonian forms over algebras of divided powers, Math. USSR Sb. 69 (1991), 121-141.
  56. Skryabin S.M., A contragredient $29$-dimensional Lie algebra of characteristic $3$, Sib. Math. J. 34 (1993), 548-554.
  57. Skryabin S.M., Toral rank one simple Lie algebras of low characteristics, J. Algebra 200 (1998), 650-700.
  58. Skryabin S.M., The normal shapes of symplectic and contact forms over algebras of divided powers, arXiv:1906.11496.
  59. Strade H., Simple Lie algebras over fields of positive characteristic. I. Structure theory, De Gruyter Exp. Math., Vol. 38, De Gruyter, Berlin, 2004.
  60. Tyurin S.A., Classification of deformations of the special Lie algebra of Cartan type, Math. Notes 24 (1978), 948-954.
  61. Weisfeiler B.Ju., Kac V.G., Exponentials in Lie algebras of characteristic $p$, Math. USSR Izv. 5 (1971), 777-803.
  62. Wilson R.L., Simple Lie algebras of type $S$, J. Algebra 62 (1980), 292-298.
  63. Zusmanovich P., A converse to the second Whitehead lemma, J. Lie Theory 18 (2008), 295-299, Erratum, J. Lie Theory 24 (2014), 1207-1208, arXiv:0704.3864.

Previous article  Next article  Contents of Volume 19 (2023)