Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 19 (2023), 031, 66 pages      arXiv:0807.3054      https://doi.org/10.3842/SIGMA.2023.031

Deformations of Symmetric Simple Modular Lie (Super)Algebras

Sofiane Bouarroudj a, Pavel Grozman b and Dimitry Leites ac
a) New York University Abu Dhabi, Division of Science and Mathematics, P.O. Box 129188, United Arab Emirates
b) Deceased
c) Department of Mathematics, University of Stockholm, SE-106 91 Stockholm, Sweden

Received November 16, 2016, in final form February 02, 2023; Published online May 29, 2023

Abstract
We say that a Lie (super)algebra is ''symmetric'' if with every root (with respect to the maximal torus) it has the opposite root of the same multiplicity. Over algebraically closed fields of positive characteristics (up to 7 or 11, enough to formulate a general conjecture), we computed the cohomology corresponding to the infinitesimal deformations of all known simple finite-dimensional symmetric Lie (super)algebras of rank <9, except for superizations of the Lie algebras with ADE root systems, and queerified Lie algebras, considered only partly. The moduli of deformations of any Lie superalgebra constitute a supervariety. Any infinitesimal deformation given by any odd cocycleis integrable. All deformations corresponding to odd cocycles are new. Among new results are classifications of the cocycles describing deforms (results of deformations) of the 29-dimensional Brown algebra in characteristic 3, of Weisfeiler-Kac algebras and orthogonal Lie algebras without Cartan matrix in characteristic 2. Open problems: describe non-isomorphic deforms and equivalence classes of cohomology theories. Appendix: For several modular analogs of complex simple Lie algebras, and simple Lie algebras indigenous to characteristics 3 and 2, we describe the space of cohomology with trivial coefficients. We show that the natural multiplication in this space is very complicated.

Key words: modular Lie superalgebra; Lie superalgebra cohomology; Lie superalgebra deformation.

pdf (921 kb)   tex (92 kb)  

References

  1. Batchelor M., The structure of supermanifolds, Trans. Amer. Math. Soc. 253 (1979), 329-338.
  2. Benayadi S., Bouarroudj S., Hajli M., Double extensions of restricted Lie (super)algebras, Arnold Math. J. 6 (2020), 231-269, arXiv:1810.03086.
  3. Benayadi S., Mhamdi F., Invariant bilinear forms on Leibniz superalgebras, J. Algebra Appl. 21 (2022), 2250098, 32 pages.
  4. Benkart G., Elduque A., The Tits construction and the exceptional simple classical Lie superalgebras, Q. J. Math. 54 (2003), 123-137.
  5. Benkart G., Gregory T., Premet A., The recognition theorem for graded Lie algebras in prime characteristic, Mem. Amer. Math. Soc. 197 (2009), xii+145 pages, arXiv:math.RA/0508373.
  6. Berezin F.A., Introduction to superanalysis, Math. Phys. Appl. Math., Vol. 9, D. Reidel Publishing Co., Dordrecht, 1987.
  7. Bernstein J., Leites D., Molotkov V., Shander V., Seminar on supersymmetries, Vol. 1, Algebra and calculus: main facts, MCCME, Moscow, 2011.
  8. Block R.E., Wilson R.L., Classification of the restricted simple Lie algebras, J. Algebra 114 (1988), 115-259.
  9. Bouarroudj S., Grozman P., Lebedev A., Leites D., Divided power (co)homology. Presentations of simple finite dimensional modular Lie superalgebras with Cartan matrix, Homology Homotopy Appl. 12 (2010), 237-278, arXiv:0911.0243.
  10. Bouarroudj S., Grozman P., Lebedev A., Leites D., Derivations and central extensions of simple modular Lie algebras and superalgebras (with an Appendix by Andrey Krutov), SIGMA 19 (2023), 032, 73 pages, arXiv:1307.1858.
  11. Bouarroudj S., Grozman P., Lebedev A., Leites D., Shchepochkina I., New simple Lie algebras in characteristic $2$, Int. Math. Res. Not. 2016 (2016), 5695-5726, arXiv:1307.1551.
  12. Bouarroudj S., Grozman P., Lebedev A., Leites D., Shchepochkina I., Simple vectorial Lie algebras in characteristic $2$ and their superizations, SIGMA 16 (2020), 089, 101 pages, arXiv:1510.07255.
  13. Bouarroudj S., Grozman P., Leites D., New simple modular Lie superalgebras as generalized prolongations, Funct. Anal. Appl. 42 (2008), 161-168, arXiv:0704.0130.
  14. Bouarroudj S., Grozman P., Leites D., Classification of finite dimensional modular Lie superalgebras with indecomposable Cartan matrix, SIGMA 5 (2009), 060, 63 pages, arXiv:0710.5149.
  15. Bouarroudj S., Krutov A., Lebedev A., Leites D., Shchepochkina I., Restricted simple Lie (super)algebras in characteristic $3$, Funct. Anal. Appl. 52 (2018), 49-52, arXiv:1809.08582.
  16. Bouarroudj S., Lebedev A., Leites D., Shchepochkina I., Lie algebra deformations in characteristic $2$, Math. Res. Lett. 22 (2015), 353-402, arXiv:1301.2781.
  17. Bouarroudj S., Lebedev A., Leites D., Shchepochkina I., Classification of simple Lie superalgebras in characteristic $2$, Int. Math. Res. Not. 2023 (2023), 54-94, arXiv:1407.1695.
  18. Bouarroudj S., Lebedev A., Vagemann F., Deformations of the Lie algebra $\mathfrak{o}(5)$ in characteristics $3$ and $2$, Math. Notes 89 (2011), 777-791, arXiv:0909.3572.
  19. Bouarroudj S., Leites D., Simple Lie superalgebras and nonintegrable distributions in characteristic $p$, J. Math. Sci. 141 (2007), 1390-1398, arXiv:math.RT/0606682.
  20. Bouarroudj S., Leites D., Lozhechnyk O., Shang J., The roots of exceptional modular Lie superalgebras with Cartan matrix, Arnold Math. J. 6 (2020), 63-118, arXiv:1904.09578.
  21. Bouarroudj S., Leites D., Shang J., Computer-aided study of double extensions of restricted lie superalgebras preserving the nondegenerate closed 2-forms in characteristic $2$, Exp. Math. 31 (2022), 676-688, arXiv:1904.09579.
  22. Brown G., Properties of a $29$-dimensional simple Lie algebra of characteristic three, Math. Ann. 261 (1982), 487-492.
  23. Brown G., Families of simple Lie algebras of characteristic two, Comm. Algebra 23 (1995), 941-954.
  24. Cantarini N., Cheng S.-J., Kac V.G., Errata to: ''Structure of some $\mathbb Z$-graded Lie superalgebras of vector fields'' (Transform. Groups 4 (1999), 219-272), Transform. Groups 9 (2004), 399-400.
  25. Cantarini N., Kac V.G., Automorphisms and forms of simple infinite-dimensional linearly compact Lie superalgebras, Int. J. Geom. Methods Mod. Phys. 3 (2006), 845-867, arXiv:math.QA/0601292.
  26. Cantarini N., Kac V.G., Infinite-dimensional primitive linearly compact Lie superalgebras, Adv. Math. 207 (2006), 328-419, arXiv:math.QA/0511424.
  27. Cantarini N., Kac V.G., Classification of linearly compact simple rigid superalgebras, Int. Math. Res. Not. 2010 (2010), 3341-3393, arXiv:0909.3100.
  28. Carles R., Un exemple d'algèbres de Lie résolubles rigides, au deuxième groupe de cohomologie non nul et pour lesquelles l'application quadratique de D.S. Rim est injective, C. R. Acad. Sci. Paris Sér. I Math. 300 (1985), 467-469.
  29. Cartan H., La transgression dans un groupe de Lie et dans un espace fibré principal, in Colloque de Topologie (Espaces Fibrés), Bruxelles, 1950, Georges Thone, Liège, Masson & Cie, Paris, 1951, 57-71.
  30. Chapovalov D., Chapovalov M., Lebedev A., Leites D., The classification of almost affine (hyperbolic) Lie superalgebras, J. Nonlinear Math. Phys. 17 (2010), 103-161, arXiv:0906.1860.
  31. Chebochko N.G., Deformations of Lie algebra of type $G_2$ in characteristic $2$, Russian Math. 44 (2000), 31-36.
  32. Chebochko N.G., Deformations of classical Lie algebras with a homogeneous root system in characteristic two. I, Sb. Math. 196 (2005), 1371-1402.
  33. Chebochko N.G., Deformations of classical Lie algebras of type $D_l$ over a field of characteristic $2$, Trans. Nizhny Novgorod State Tech. Univ. (2011), no. 1, 337-341.
  34. Chebochko N.G., Kuznetsov M.I., Integrable cocycles and global deformations of Lie algebra of type $G_2$ in characteristic $2$, Comm. Algebra 45 (2017), 2969-2977.
  35. Cheng S.-J., Kac V.G., Generalized Spencer cohomology and filtered deformations of ${\mathbb Z}$-graded Lie superalgebras, Adv. Theor. Math. Phys. 2 (1998), 1141-1182, arXiv:math.RT/9805039.
  36. Cheng S.-J., Kac V.G., Structure of some $\mathbb Z$-graded Lie superalgebras of vector fields, Transform. Groups 4 (1999), 219-272.
  37. Cheng S.-J., Kac V.G., Addendum: ''Generalized Spencer cohomology and filtered deformations of ${\mathbb Z}$-graded Lie superalgebras'' (Adv. Theor. Math. Phys. 2 (1998), 1141-1182), Adv. Theor. Math. Phys. 8 (2004), 697-709.
  38. Cushing D., Stagg G.W., Stewart D.I., A Prolog assisted search for new simple Lie algebras, arXiv:2207.01094.
  39. Deligne P., Etingof P., Freed D.S., Jeffrey L.C., Kazhdan D., Morgan J.W., Morrison D.R., Witten E., Quantum fields and strings: a course for mathematicians, Vols. 1, 2, Amer. Math. Soc., Providence, RI, Institute for Advanced Study (IAS), Princeton, NJ, 1999.
  40. Dzhumadil'daev A.S., On the deformations of the classical simple Lie algebras, Russian Math. Surveys 31 (1976), no. 3, 211-212.
  41. Dzhumadil'daev A.S., On the cohomology of modular Lie algebras, Math. USSR Sb. 47 (1984), 127-143.
  42. Dzhumadil'daev A.S., Cohomology of truncated co-induced representations of Lie algebras of positive characteristic, Math. USSR Sb. 66 (1990), 461-473.
  43. Dzhumadil'daev A.S., Deformations of the Lie algebras $W_n({\bf m})$, Math. USSR Sb. 66 (1990), 169-187.
  44. Dzhumadil'daev A.S., Zusmanovich P., Commutative $2$-cocycles on Lie algebras, J. Algebra 324 (2010), 732-748, arXiv:0907.4780.
  45. Dzhumadil'daev A.S., Kostrikin A.I., Deformations of the Lie algebra $W_{1}(m)$, Proc. Steklov Inst. Math. 148 (1980), 143-158.
  46. Eick B., Some new simple Lie algebras in characteristic $2$, J. Symbolic Comput. 45 (2010), 943-951.
  47. Elduque A., Tits construction of the exceptional simple Lie algebras, Pure Appl. Math. Q. 7 (2011), 559-586, arXiv:0907.3789.
  48. Evans T.J., Cohomology of restricted Lie algebras, Ph.D. Thesis, University of California Davis, 2000, arXiv:math.RT/0111090.
  49. Fei Q.Y., On new simple Lie algebras of Shen Guangyu, Chinese Ann. Math. Ser. B 10 (1989), 448-457.
  50. Fialowski A., Fuchs D., Singular deformations of Lie algebras. Example: deformations of the Lie algebra $L_1$, in Topics in Singularity Theory, Amer. Math. Soc. Transl. Ser. 2, Vol. 180, Amer. Math. Soc., Providence, RI, 1997, 77-92, arXiv:q-alg/9706027.
  51. Frappat L., Sorba P., Sciarrino A., Deformation of the strange superalgebra $\widetilde{P}(n)$, J. Phys. A 26 (1993), L661-L665.
  52. Fuchs D., Cohomology of infinite-dimensional Lie algebras, Nauka, Moscow, 1984.
  53. Fuchs D., Cohomology of infinite-dimensional Lie algebras, Contemp. Soviet Math., Springer, New York, NY, 1986.
  54. Fuchs D., Weldon L.L., Massey brackets and deformations, J. Pure Appl. Algebra 156 (2001), 215-229, arXiv:q-alg/9602024.
  55. Fulton W., Harris J., Representation theory. A first course., Grad. Texts in Math., Vol. 129, Springer-Verlag, New York, 1991.
  56. Gawedzki K., Supersymmetries - mathematics of supergeometry, Ann. Inst. H. Poincaré A 27 (1977), 335-366.
  57. Gorenstein D., Finite simple groups. An introduction to their classification, Univ. Ser. Math., Springer, New York, NY, 1982.
  58. Green P., On holomorphic graded manifolds, Proc. Amer. Math. Soc. 85 (1982), 587-590.
  59. Grishkov A., Guzzo Jr. H., Rasskazova M., Zusmanovich P., On simple 15-dimensional Lie algebras in characteristic $2$, J. Algebra 593 (2022), 295-318, arXiv:2104.01400.
  60. Grishkov A., Zusmanovich P., Deformations of current Lie algebras. I. Small algebras in characteristic $2$, J. Algebra 473 (2017), 513-544, arXiv:1410.3645.
  61. Grozman P., SuperLie, 2013, http://www.equaonline.com/math/SuperLie.
  62. Grozman P., Leites D., Defining relations associated with principal $\mathfrak{sl}(2)$-subalgebras, in Contemporary Mathematical Physics, Amer. Math. Soc. Transl. Ser. 2, Vol. 175, Amer. Math. Soc., Providence, RI, 1996, 57-67, arXiv:math-ph/0510013.
  63. Grozman P., Leites D., Structures of $G(2)$ type and nonintegrable distributions in characteristic $p$, Lett. Math. Phys. 74 (2005), 229-262, arXiv:math.RT/0509400.
  64. Grozman P., Leites D., Shchepochkina I., The analogs of the Riemann tensor for exceptional structures on supermanifolds, in Fundamental Mathematics Today, Independent University of Moscow, Moscow, 2003, 89-109, arXiv:math.RT/0509525.
  65. Helgason S., Differential geometry, Lie groups, and symmetric spaces, Pure Appl. Math., Vol. 80, Academic Press, Inc., New York, 1978.
  66. Hochschild G., Cohomology of restricted Lie algebras, Amer. J. Math. 76 (1954), 555-580.
  67. Ibraev Sh.Sh., Turbayev B.T., Cohomology for the Lie algebra of type $A_2$ over a field of characteristic $2$, Sib. Electron. Math. Rep. 18 (2021), 729-739.
  68. Ismailov N., Kaygorodov I., Volkov Yu., The geometric classification of Leibniz algebras, Internat. J. Math. 29 (2018),, arXiv:1705.04346.
  69. Iyer U.N., Volichenko algebras as algebras of differential operators, J. Nonlinear Math. Phys. 13 (2006), 34-49,.
  70. Iyer U.N., Lebedev A., Leites D., Prolongs of (ortho-)orthogonal Lie (super)algebras in characteristic $2$, J. Nonlinear Math. Phys. 17 (2010), 253-309.
  71. Kac V.G., A description of the filtered Lie algebras with which graded Lie algebras of Cartan type are associated, Math. USSR Izv. 8 (1974), 801-835.
  72. Kac V.G., Infinite-dimensional Lie algebras, 3rd ed., Cambridge University Press, Cambridge, 1990.
  73. Kac V.G., Corrections to: ''Exponentials in Lie algebras of characteristic $p$'' (Izv. Math. 35 (1971), 762-788), Izv. Math. 45 (1995), 229.
  74. Kac V.G., Classification of infinite-dimensional simple linearly compact Lie superalgebras, Adv. Math. 139 (1998), 1-55.
  75. Kac V.G., Classification of supersymmetries, in Proceedings of the International Congress of Mathematicians, Vol. I (Beijing, 2002), Higher Ed. Press, Beijing, 2002, 319-344, arXiv:math-ph/0302016.
  76. Kannan A., New constructions of exceptional simple Lie superalgebras with integer Cartan matrix in characteristics 3 and 5 via tensor categories, arXiv:2108.05847.
  77. Kirillov S.A., Sandwich subalgebras in simple finite-dimensional Lie algebras, Ph.D. Thesis, Nizhny Novgorod, 1991, available at https://web.osu.cz/ Zusmanovich/links/files/kirillov/1992-thesis.pdf.
  78. Kirillov S.A., Kuznetsov M.I., Chebochko N.G., Deformations of a Lie algebra of type $G_2$ of characteristic three, Russian Math. 44 (2000), 31-36.
  79. Kondrateva A.V., Kuznetsov M.I., Chebochko N.G., Non-alternating Hamiltonian Lie algebras in characteristic $2$. I, arXiv:1812.11213.
  80. Konshtein S.E., Smirnov A.G., Tyutin I.V., Cohomology of the Poisson superalgebra, Theoret. and Math. Phys. 143 (2005), 625-650, arXiv:hep-th/0312109.
  81. Kontsevich M., Rosenberg A.L., Noncommutative smooth spaces, in The Gelfand Mathematical Seminars, 1996-1999, Gelfand Math. Sem., Birkhäuser Boston, Boston, MA, 2000, 85-108, arXiv:math.AG/9812158.
  82. Kostrikin A.I., A parametric family of simple Lie algebras, Math. USSR Izv. 4 (1970), 751-764.
  83. Kostrikin A.I., The beginnings of modular Lie algebra theory, in Group Theory, Algebra, and Number Theory (Saarbrücken, 1993), De Gruyter, Berlin, 1996, 13-52.
  84. Kostrikin A.I., Dzhumadil'daev A.S., Modular Lie algebras: new trends, in Algebra (Moscow, 1998), De Gruyter, Berlin, 2000, 181-203.
  85. Kostrikin A.I., Kuznetsov M.I., On deformations of classical Lie algebras of characteristic three, Dokl. Akad. Nauk 343 (1995), 299-301.
  86. Kostrikin A.I., Shafarevich I.R., Graded Lie algebras of finite characteristic, Math. USSR Izv. 3 (1969), 237-304.
  87. Krutov A., Lebedev A., On gradings modulo 2 of simple Lie algebras in characteristic $2$, SIGMA 14 (2018), 130, 27 pages, arXiv:1711.00638.
  88. Krutov A., Lebedev A., Leites D., Shchepochkina I., Nondegenerate invariant symmetric bilinear forms on simple Lie superalgebras in characteristic $2$, Linear Algebra Appl. 649 (2022), 1-21, arXiv:2102.11653.
  89. Krutov A., Leites D., Shang J., The Duflo-Serganova homology for exceptional modular Lie superalgebras with indecomposable Cartan matrix, arXiv:2008.12033.
  90. Kuznetsov M.I., Chebochko N.G., Deformations of classical Lie algebras, Sb. Math 191 (2000), 1171-1190.
  91. Kuznetsov M.I., Chebochko N.G., Deformations of Lie algebra of type $A_5$ in characteristic $2$, Univ. Proc. Volga Region Phys. Math. Sci. (2019), 49-55.
  92. Kuznetsov M.I., Chebochko N.G., Global deformations of a Lie algebra of type $\overline {A}_5$ in characteristic $2$, Lobachevskii J. Math. 41 (2020), 238-242, arXiv:1912.11694.
  93. Kuznetsov M.I., Jakovlev V.A., On exceptional simple Lie algebras of series $R$, Abstracts of Third International Conference on Algebra, Krasnoyarsk, 1993, 411.
  94. Kuznetsov M.I., Kondrateva A.V., Chebochko N.G., On Hamiltonian Lie algebras in characteristic $2$, Math. J. 16 (2016), 54-65.
  95. Kuznetsov M.I., Kondrateva A.V., Chebochko N.G., Simple 14-dimensional Lie algebras in characteristic $2$, J. Math. Sci. 240 (2019), 474–480.
  96. Ladilova A.A., Deformations of exceptional simple Lie algebras, Ph.D. Thesis, Nizhnii Novgorod, 2010, available at http://www.algebraic.ru/lib/exe/fetch.php?media=fromauthors:yozhik.pdf.
  97. Ladilova A.A., Filtered deformations of Frank algebras, Russian Math. 53 (2009), 43-45.
  98. Ladilova A.A., Filtered deformations of Lie algebras of the series $Y$, J. Math. Sci. 164 (2010), 91-94.
  99. Ladilova A.A., Filtered deformations of Lie algebras of series $Z$, in Proceedings of the international Conference Dedicated to 100-th Anniversary of V.V. Morozov (Kazan, September 25-30, 2011) and youth School-Conference ''Modern Problems of Algebra and Mathematical Logic'', Federal University, Kazan, 2011, 123-124.
  100. Lebedev A., Analogs of the orthogonal, Hamiltonian, Poisson, and contact Lie superalgebras in characteristic $2$, J. Nonlinear Math. Phys. 17 (2010), 217-251.
  101. Lebedev A., Leites D., On realizations of the Steenrod algebras, J. Prime Res. Math. 2 (2006), 101-112.
  102. Lecomte P.B.A., Roger C., Rigidity of current Lie algebras of complex simple type, J. Lond. Math. Soc. 37 (1988), 232-240.
  103. Leites D., Spectra of graded-commutative rings, Uspehi Mat. Nauk 29 (1974), no. 3, 209-210.
  104. Leites D., Cohomology of Lie superalgebras, Funct. Anal. Appl. 9 (1975), 340-341.
  105. Leites D., Toward classification of classical Lie superalgebras, in Differential Geometric Methods in Theoretical Physics (Davis, CA, 1988), NATO Adv. Sci. Inst. Ser. B: Phys., Vol. 245, Plenum, New York, 1990, 633-651.
  106. Leites D., Towards classification of simple finite dimensional modular Lie superalgebras, J. Prime Res. Math. 3 (2007), 101-110, arXiv:0710.5638.
  107. Leites D., Arkady Onishchik: on his life and work on supersymmetry, Commun. Math. 30 (2022), 1-24, arXiv:2203.09909.
  108. Leites D., New simple Lie superalgebras as queerified associative algebras, Adv. Theor. Math. Phys., to appear, arXiv:2203.06917.
  109. Leites D., On odd parameters in geometry, J. Lie Theory, to appear, arXiv:2210.17096.
  110. Leites D., Serganova V., Symmetries wider than supersymmetry, in Noncommutative Structures in Mathematics and Physics (Kiev, 2000), NATO Sci. Ser. II Math. Phys. Chem., Vol. 22, Kluwer Acad. Publ., Dordrecht, 2001, 13-30.
  111. Leites D., Shchepochkina I., Toward classification of simple vectorial Lie superalgebras, in Seminar on Supermanifolds, Reports of Stockholm University, Vol. 31, Stockholm University, 1988, 235-278.
  112. Leites D., Shchepochkina I., How should an antibracket be quantized?, Theoret. and Math. Phys. 126 (2001), 339-369.
  113. Leites D., Shchepochkina I.M., Classification of the simple Lie superalgebras of vector fields, Preprint MPIM-2003-28, 2003, aviable at http://www.mpim-bonn.mpg.de/preblob/2178.
  114. Lie algebra cohomology, Wikipedia, https://en.wikipedia.org/wiki/Lie_algebra_cohomology.
  115. Liu D., Lin L., On the variations of $G_2$, Chinese Ann. Math. Ser. B 24 (2003), 387-394.
  116. Lopatkin V., Zusmanovich P., Commutative Lie algebras and commutative cohomology in characteristic $2$, Commun. Contemp. Math. 23 (2021), 2050046, 20 pages, arXiv:1907.03690.
  117. Manin Yu.I., Gauge field theory and complex geometry, 2nd ed., Grundlehren Math. Wiss., Vol. 289, Springer, Berlin, 1997.
  118. Manin Yu.I., Introduction to the theory of schemes, Mosc. Lect., Vol. 1, Springer, Cham, 2018.
  119. Melikyan H., Zusmanovich P., Melikyan algebra is a deformation of a Poisson algebra, J. Phys. Conf. Ser. 532 (2014), 012019, 5 pages, arXiv:1401.2566.
  120. Onishchik A.L., Vinberg E.B., Lie groups and algebraic groups, Springer Ser. Soviet Math., Springer, Berlin, 1990.
  121. Onishchik A.L., Vishnyakova E.G., Locally free sheaves on complex supermanifolds, Transform. Groups 18 (2013), 483-505, arXiv:1110.3908.
  122. Palamodov V.P., Invariants of analytic $Z_{2}$-manifolds, Funct. Anal. Appl. 17 (1983), 68-69.
  123. Reyman A.G., Extensions of Gauge groups, related to quantum anomalies, J. Soviet Math. 40 (1988), 80-93.
  124. Richardson Jr. R.W., On the rigidity of semi-direct products of Lie algebras, Pacific J. Math. 22 (1967), 339-344.
  125. Rosenberg A.L., Noncommutative algebraic geometry and representations of quantized algebras, Math. Appl., Vol. 330, Kluwer Academic Publishers Group, Dordrecht, 1995.
  126. Rudakov A.N., Deformations of simple Lie algebras, Math. USSR Izv. 5 (1971), 1120-1126.
  127. Scheunert M., Generalized Lie algebras, J. Math. Phys. 20 (1979), 712-720.
  128. Seligman G.B., Modular Lie algebras, Ergeb. Math. Grenzgeb. (3), Vol. 40, Springer, Berlin, 1967.
  129. Serganova V., On generalizations of root systems, Comm. Algebra 24 (1996), 4281-4299.
  130. Shchepochkina I., The five exceptional simple Lie superalgebras of vector fields and their fourteen regradings, Represent. Theory 3 (1999), 373-415, arXiv:hep-th/9702121.
  131. Shchepochkina I., How to realize a Lie algebra by vector fields, Theoret. and Math. Phys. 147 (2006), 821-838, arXiv:math.RT/0509472.
  132. Shen G.-Y., Variations of the classical Lie algebra $G_2$ in low characteristics, Nova J. Algebra Geom. 2 (1993), 217-243.
  133. Shen G.-Y., Lie algebras of CL type, J. Algebra 249 (2002), 95-109.
  134. Skryabin S.M., The normal shapes of symplectic and contact forms over algebras of divided powers, arXiv:1906.11496.
  135. Skryabin S.M., Classification of Hamiltonian forms over algebras of divided powers, Math. USSR Sb. 69 (1991), 121-141.
  136. Skryabin S.M., A contragredient $29$-dimensional Lie algebra of characteristic $3$, Sib. Math. J. 34 (1993), 548-554.
  137. Skryabin S.M., New series of simple Lie algebras of characteristic $3$, Sb. Math 76 (1993), 389-406.
  138. Skryabin S.M., Group schemes and rigidity of algebras in positive characteristic, J. Pure Appl. Algebra 105 (1995), 195-224.
  139. Skryabin S.M., Toral rank one simple Lie algebras of low characteristics, J. Algebra 200 (1998), 650-700.
  140. Strade H., Simple Lie algebras over fields of positive characteristic. I. Structure theory, De Gruyter Exp. Math., Vol. 38, De Gruyter, Berlin, 2004.
  141. Strade H., Simple Lie algebras over fields of positive characteristic. II. Classifying the absolute toral rank two case, De Gruyter Exp. Math., Vol. 42, De Gruyter, Berlin, 2009.
  142. Strade H., Simple Lie algebras over fields of positive characteristic. III. Completion of the classification, De Gruyter Exp. Math., Vol. 57, De Gruyter, Berlin, 2012.
  143. Tyurin S.A., Classification of deformations of the special Lie algebra of Cartan type, Math. Notes 24 (1978), 948-954.
  144. Tyutin I.V., The general form of the $\ast$-commutator on the Grassmann algebra, Theoret. and Math. Phys. 128 (2001), 515-539, arXiv:hep-th/0101068.
  145. Vaintrob A.Yu., Deformations of complex superspaces and of the coherent sheaves on them, J. Soviet Math. 51 (1990), 2140-2188.
  146. Viviani F., Infinitesimal deformations of restricted simple Lie algebras. I, J. Algebra 320 (2008), 4102-4131, arXiv:math.RA/0612861.
  147. Viviani F., Deformations of the restricted Melikian Lie algebra, Comm. Algebra 37 (2009), 1850-1872, arXiv:math.RA/0702594.
  148. Viviani F., Infinitesimal deformations of restricted simple Lie algebras. II, J. Pure Appl. Algebra 213 (2009), 1702-1721, arXiv:math.RA/0702499.
  149. Viviani F., Simple finite group schemes and their infinitesimal deformations, Rend. Semin. Mat. Univ. Politec. Torino 68 (2010), 171-182, arXiv:0811.2668.
  150. Viviani F., Restricted infinitesimal deformations of restricted simple Lie algebras, J. Algebra Appl. 11 (2012), 1250091, 19 pages, arXiv:0705.0821.
  151. Weisfeiler B.Ju., Kac V.G., Exponentials in Lie algebras of characteristic $p$, Math. USSR Izv. 5 (1971), 777-803.
  152. Wilson R.L., Simple Lie algebras of type $S$, J. Algebra 62 (1980), 292-298.
  153. Yuan J.X., Chen L.Y., Cao Y., Restricted cohomology of restricted Lie superalgebras, Acta Math. Sin. (Engl. Ser.) 38 (2022), 2115-2130.
  154. Zusmanovich P., Lie algebras and around: selected questions, Math. J. 16 (2016), 231-245, arXiv:1608.05863.

Previous article  Next article  Contents of Volume 19 (2023)