Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 19 (2023), 030, 30 pages      arXiv:2211.16898      https://doi.org/10.3842/SIGMA.2023.030
Contribution to the Special Issue on Evolution Equations, Exactly Solvable Models and Random Matrices in honor of Alexander Its' 70th birthday

Recursion Relation for Toeplitz Determinants and the Discrete Painlevé II Hierarchy

Thomas Chouteau a and Sofia Tarricone b
a) Université d'Angers, CNRS, LAREMA, SFR MATHSTIC, F-49000 Angers, France
b) Institut de Physique Théorique, Université Paris-Saclay, CEA, CNRS, F-91191 Gif-sur-Yvette, France

Received December 22, 2022, in final form May 16, 2023; Published online May 28, 2023

Abstract
Solutions of the discrete Painlevé II hierarchy are shown to be in relation with a family of Toeplitz determinants describing certain quantities in multicritical random partitions models, for which the limiting behavior has been recently considered in the literature. Our proof is based on the Riemann-Hilbert approach for the orthogonal polynomials on the unit circle related to the Toeplitz determinants of interest. This technique allows us to construct a new Lax pair for the discrete Painlevé II hierarchy that is then mapped to the one introduced by Cresswell and Joshi.

Key words: discrete Painlevé equations; orthogonal polynomials; Riemann-Hilbert problems; Toeplitz determinants.

pdf (614 kb)   tex (53 kb)  

References

  1. Adler M., van Moerbeke P., Recursion relations for unitary integrals, combinatorics and the Toeplitz lattice, Comm. Math. Phys. 237 (2003), 397-440, arXiv:math-ph/0201063.
  2. Baik J., Riemann-Hilbert problems for last passage percolation, in Recent Developments in Integrable Systems and Riemann-Hilbert Problems (Birmingham, AL, 2000), Contemp. Math., Vol. 326, Amer. Math. Soc., Providence, RI, 2003, 1-21, arXiv:math.PR/0107079.
  3. Baik J., Deift P., Johansson K., On the distribution of the length of the longest increasing subsequence of random permutations, J. Amer. Math. Soc. 12 (1999), 1119-1178, arXiv:math.CO/9810105.
  4. Baik J., Deift P., Suidan T., Combinatorics and random matrix theory, Grad. Stud. Math., Vol. 172, Amer. Math. Soc., Providence, RI, 2016.
  5. Betea D., Bouttier J., Walsh H., Multicritical random partitions, Sém. Lothar. Combin. 85 B (2021), 33, 12 pages, arXiv:2012.01995.
  6. Borodin A., Discrete gap probabilities and discrete Painlevé equations, Duke Math. J. 117 (2003), 489-542, arXiv:math-ph/0111008.
  7. Borodin A., Okounkov A., A Fredholm determinant formula for Toeplitz determinants, Integral Equations Operator Theory 37 (2000), 386-396, arXiv:math.CA/9907165.
  8. Cafasso M., Claeys T., Girotti M., Fredholm determinant solutions of the Painlevé II hierarchy and gap probabilities of determinantal point processes, Int. Math. Res. Not. 2021 (2021), 2437-2478, arXiv:1902.05595.
  9. Cafasso M., Ruzza G., Integrable equations associated with the finite-temperature deformation of the discrete Bessel point proces, J. Lond. Math. Soc., to appear, arXiv:2207.01421.
  10. Clarkson P.A., Joshi N., Mazzocco M., The Lax pair for the mKdV hierarchy, in Théories Asymptotiques et Équations de Painlevé, Sémin. Congr., Vol. 14, Soc. Math. France, Paris, 2006, 53-64.
  11. Cresswell C., Joshi N., The discrete first, second and thirty-fourth Painlevé hierarchies, J. Phys. A 32 (1999), 655-669.
  12. Dattoli G., Chiccoli C., Lorenzutta S., Maino G., Richetta M., Torre A., Generating functions of multivariable generalized Bessel functions and Jacobi-elliptic functions, J. Math. Phys. 33 (1992), 25-36.
  13. Deift P.A., Orthogonal polynomials and random matrices: a Riemann-Hilbert approach, Courant Lect. Notes Math., Vol. 3, Amer. Math. Soc., Providence, RI, 1999.
  14. Flaschka H., Newell A.C., Monodromy- and spectrum-preserving deformations. I, Comm. Math. Phys. 76 (1980), 65-116.
  15. Fokas A.S., Its A.R., Kitaev A.V., Discrete Painlevé equations and their appearance in quantum gravity, Comm. Math. Phys. 142 (1991), 313-344.
  16. Forrester P.J., Witte N.S., Bi-orthogonal polynomials on the unit circle, regular semi-classical weights and integrable systems, Constr. Approx. 24 (2006), 201-237, arXiv:math.CA/0412394.
  17. Hastings S.P., McLeod J.B., A boundary value problem associated with the second Painlevé transcendent and the Korteweg-de Vries equation, Arch. Rational Mech. Anal. 73 (1980), 31-51.
  18. Hisakado M., Unitary matrix models and Painlevé III, Modern Phys. Lett. A 11 (1996), 3001-3010, arXiv:hep-th/9609214.
  19. Hisakado M., Wadati M., Matrix models of two-dimensional gravity and discrete Toda theory, Modern Phys. Lett. A 11 (1996), 1797-1806, arXiv:hep-th/9605175.
  20. Its A.R., Kitaev A.V., Fokas A.S., An isomonodromy approach to the theory of two-dimensional quantum gravity, Russian Math. Surveys 45 (1990), 155-157.
  21. Kimura T., Zahabi A., Universal edge scaling in random partitions, Lett. Math. Phys. 111 (2021), 48, 16 pages, arXiv:2012.06424.
  22. Le Doussal P., Majumdar S.N., Schehr G., Multicritical edge statistics for the momenta of fermions in nonharmonic traps, Phys. Rev. Lett. 121 (2018), 030603, 7 pages, arXiv:1802.06436.
  23. Okounkov A., Infinite wedge and random partitions, Selecta Math. (N.S.) 7 (2001), 57-81, arXiv:math.RT/9907127.
  24. Painlevé P., Mémoire sur les équations différentielles dont l'intégrale générale est uniforme, Bull. Soc. Math. France 28 (1900), 201-261.
  25. Periwal V., Shevitz D., Exactly solvable unitary matrix models: multicritical potentials and correlations, Nuclear Phys. B 344 (1990), 731-746.
  26. Ramani A., Grammaticos B., Hietarinta J., Discrete versions of the Painlevé equations, Phys. Rev. Lett. 67 (1991), 1829-1832.
  27. Schensted C., Longest increasing and decreasing subsequences, Canadian J. Math. 13 (1961), 179-191.
  28. Tracy C.A., Widom H., Fredholm determinants, differential equations and matrix models, Comm. Math. Phys. 163 (1994), 33-72, arXiv:hep-th/9306042.
  29. Tracy C.A., Widom H., Level-spacing distributions and the Airy kernel, Comm. Math. Phys. 159 (1994), 151-174, arXiv:hep-th/9211141.

Previous article  Next article  Contents of Volume 19 (2023)