|
SIGMA 19 (2023), 021, 41 pages arXiv:2108.02608
https://doi.org/10.3842/SIGMA.2023.021
Rank 4 Nichols Algebras of Pale Braidings
Nicolás Andruskiewitsch a, Iván Angiono a and Matías Moya Giusti b
a) Facultad de Matemática, Astronomía, Física y Computación, Universidad Nacional de Córdoba, CIEM - CONICET, Medina Allende s/n (5000) Ciudad Universitaria, Córdoba, Argentina
b) 6 rue Rampal, 75019, Paris, France
Received November 25, 2022, in final form March 21, 2023; Published online April 13, 2023
Abstract
We classify finite GK-dimensional Nichols algebras ${\mathscr B}(V)$ of rank 4 such that $V$ arises as a Yetter-Drinfeld module over an abelian group but it is not a direct sum of points and blocks.
Key words: Hopf algebras; Nichols algebras; Gelfand-Kirillov dimension.
pdf (725 kb)
tex (45 kb)
References
- Andruskiewitsch N., An introduction to Nichols algebras, in Quantization, Geometry and Noncommutative Structures in Mathematics and Physics, Math. Phys. Stud., Springer, Cham, 2017, 135-195.
- Andruskiewitsch N., On pointed Hopf algebras over nilpotent groups, Israel J. Math., to appear, arXiv:2104.04789.
- Andruskiewitsch N., Angiono I., On Nichols algebras with generic braiding, in Modules and Comodules, Trends Math., Birkhäuser, Basel, 2008, 47-64, arXiv:math.QA/0703924.
- Andruskiewitsch N., Angiono I., On finite dimensional Nichols algebras of diagonal type, Bull. Math. Sci. 7 (2017), 353-573, arXiv:1707.08387.
- Andruskiewitsch N., Angiono I., Heckenberger I., On finite GK-dimensional Nichols algebras of diagonal type, in Tensor Categories and Hopf Algebras, Contemp. Math., Vol. 728, Amer. Math. Soc., Providence, RI, 2019, 1-23, arXiv:1803.08804.
- Andruskiewitsch N., Angiono I., Heckenberger I., On finite GK-dimensional Nichols algebras over abelian groups, Mem. Amer. Math. Soc. 271 (2021), ix+125 pages, arXiv:1606.02521.
- Andruskiewitsch N., Heckenberger I., Schneider H.J., The Nichols algebra of a semisimple Yetter-Drinfeld module, Amer. J. Math. 132 (2010), 1493-1547, arXiv:0803.2430.
- Andruskiewitsch N., Peña Pollastri H.M., On the double of the (restricted) super Jordan plane, New York J. Math. 28 (2022), 1596-1622, arXiv:2008.01234.
- Andruskiewitsch N., Sanmarco G., Finite GK-dimensional pre-Nichols algebras of quantum linear spaces and of Cartan type, Trans. Amer. Math. Soc. Ser. B 8 (2021), 296-329, arXiv:2002.11087.
- Andruskiewitsch N., Schneider H.J., Pointed Hopf algebras, in New Directions in Hopf Algebras, Math. Sci. Res. Inst. Publ., Vol. 43, Cambridge University Press, Cambridge, 2002, 1-68, arXiv:math.QA/0110136.
- Angiono I., Campagnolo E., Sanmarco G., Finite GK-dimensional pre-Nichols algebras of super and standard type, arXiv:2009.04863.
- Angiono I., García Iglesias A., On finite GK-dimensional Nichols algebras of diagonal type: rank 3 and Cartan type, Publ. Mat., to appear, arXiv:2106.10143.
- Angiono I., García Iglesias A., Finite GK-dimensional Nichols algebras of diagonal type and finite root systems, arXiv:2212.08169.
- Brown K.A., Zhang J.J., Survey on Hopf algebras of GK-dimension 1 and 2, in Hopf Algebras, Tensor Categories and Related Topics, Contemp. Math., Vol. 771, Amer. Math. Soc., Providence, RI, 2021, 43-62, arXiv:2003.14251.
- Graña M., A freeness theorem for Nichols algebras, J. Algebra 231 (2000), 235-257.
- Heckenberger I., Classification of arithmetic root systems, Adv. Math. 220 (2009), 59-124, arXiv:math.QA/0605795.
- Heckenberger I., Schneider H.J., Yetter-Drinfeld modules over bosonizations of dually paired Hopf algebras, Adv. Math. 244 (2013), 354-394, arXiv:1111.4673.
- Heckenberger I., Schneider H.J., Hopf algebras and root systems, Math. Surveys Monogr., Vol. 247, Amer. Math. Soc., Providence, RI, 2020.
- Krause G.R., Lenagan T.H., Growth of algebras and Gelfand-Kirillov dimension, Grad. Stud. Math., Vol. 22, Amer. Math. Soc., Providence, RI, 2000.
- Rosso M., Quantum groups and quantum shuffles, Invent. Math. 133 (1998), 399-416.
- Takeuchi M., Survey of braided Hopf algebras, in New Trends in Hopf Algebra Theory (La Falda, 1999), Contemp. Math., Vol. 267, Amer. Math. Soc., Providence, RI, 2000, 301-323.
- Ufer S., PBW bases for a class of braided Hopf algebras, J. Algebra 280 (2004), 84-119, arXiv:math.QA/0311504.
|
|