|
SIGMA 19 (2023), 017, 19 pages arXiv:2106.06857
https://doi.org/10.3842/SIGMA.2023.017
The Clebsch-Gordan Rule for $U(\mathfrak{sl}_2)$, the Krawtchouk Algebras and the Hamming Graphs
Hau-Wen Huang
Department of Mathematics, National Central University, Chung-Li 32001, Taiwan
Received October 03, 2022, in final form March 22, 2023; Published online April 04, 2023
Abstract
Let $D\geq 1$ and $q\geq 3$ be two integers. Let $H(D)=H(D,q)$ denote the $D$-dimensional Hamming graph over a $q$-element set. Let ${\mathcal T}(D)$ denote the Terwilliger algebra of $H(D)$.
Let $V(D)$ denote the standard ${\mathcal T}(D)$-module. Let $\omega$ denote a complex scalar. We consider a unital associative algebra $\mathfrak K_\omega$ defined by generators and relations.
The generators are $A$ and $B$. The relations are $A^2 B-2 ABA +B A^2 =B+\omega A$, $B^2A-2 BAB+AB^2=A+\omega B$. The algebra $\mathfrak K_\omega$ is the case of the Askey-Wilson algebras
corresponding to the Krawtchouk polynomials. The algebra $\mathfrak K_\omega$ is isomorphic to ${\rm U}(\mathfrak{sl}_2)$ when $\omega^2\not=1$. We view $V(D)$ as a $\mathfrak{K}_{1-\frac{2}{q}}$-module.
We apply the Clebsch-Gordan rule for ${\rm U}(\mathfrak{sl}_2)$ to decompose $V(D)$ into a direct sum of irreducible ${\mathcal T}(D)$-modules.
Key words: Clebsch-Gordan rule; Hamming graph; Krawtchouk algebra; Terwilliger algebra.
pdf (494 kb)
tex (21 kb)
References
- Bernard P.-A., Crampé N., Vinet L., Entanglement of free fermions on Johnson graphs, arXiv:2104.11581.
- Bernard P.-A., Crampé N., Vinet L., Entanglement of free fermions on Hamming graphs, Nuclear Phys. B 986 (2023), 116061, 22 pages, arXiv:2103.15742.
- Curtis C.W., Reiner I., Representation theory of finite groups and associative algebras, Pure Appl. Math., Vol. 11, Interscience Publishers, New York, 1962.
- Gijswijt D., Schrijver A., Tanaka H., New upper bounds for nonbinary codes based on the Terwilliger algebra and semidefinite programming, J. Combin. Theory Ser. A 113 (2006), 1719-1731.
- Go J.T., The Terwilliger algebra of the hypercube, European J. Combin. 23 (2002), 399-429.
- Huang H.-W., Finite-dimensional irreducible modules of the universal Askey-Wilson algebra, Comm. Math. Phys. 340 (2015), 959-984, arXiv:1210.1740.
- Huang H.-W., Finite-dimensional irreducible modules of the Bannai-Ito algebra at characteristic zero, Lett. Math. Phys. 110 (2020), 2519-2541, arXiv:1910.11447.
- Huang H.-W., Bockting-Conrad S., Finite-dimensional irreducible modules of the Racah algebra at characteristic zero, SIGMA 16 (2020), 018, 17 pages, arXiv:1910.11446.
- Jafarizadeh M.A., Nami S., Eghbalifam F., Entanglement entropy in the Hamming networks, arXiv:1503.04986.
- Kassel C., Quantum groups, Grad. Texts in Math., Vol. 155, Springer, New York, 1995.
- Levstein F., Maldonado C., Penazzi D., The Terwilliger algebra of a Hamming scheme $H(d,q)$, European J. Combin. 27 (2006), 1-10.
- Milnor J.W., Moore J.C., On the structure of Hopf algebras, Ann. of Math. 81 (1965), 211-264.
- Nomura K., Terwilliger P., Krawtchouk polynomials, the Lie algebra $\mathfrak{sl}_2$, and Leonard pairs, Linear Algebra Appl. 437 (2012), 345-375, arXiv:1201.1645.
- Tanabe K., The irreducible modules of the Terwilliger algebras of Doob schemes, J. Algebraic Combin. 6 (1997), 173-195.
- Terwilliger P., Leonard pairs and dual polynomial sequences, Unpublished manuscript, 1987, available at https://www.math.wisc.edu/ terwilli/Htmlfiles/leonardpair.pdf.
- Terwilliger P., The subconstituent algebra of an association scheme. I, J. Algebraic Combin. 1 (1992), 363-388.
- Terwilliger P., The subconstituent algebra of an association scheme. II, J. Algebraic Combin. 2 (1993), 73-103.
- Terwilliger P., The subconstituent algebra of an association scheme. III, J. Algebraic Combin. 2 (1993), 177-210.
- Terwilliger P., An algebraic approach to the Askey scheme of orthogonal polynomials, in Orthogonal Polynomials and Special Functions, Lecture Notes in Math., Vol. 1883, Springer, Berlin, 2006, 255-330.
- Terwilliger P., Manila notes, 2010, available at https://people.math.wisc.edu/ terwilli/teaching.html.
- Terwilliger P., Vidunas R., Leonard pairs and the Askey-Wilson relations, J. Algebra Appl. 3 (2004), 411-426, arXiv:math.QA/0305356.
- Vid unas R., Normalized Leonard pairs and Askey-Wilson relations, Linear Algebra Appl. 422 (2007), 39-57, arXiv:math.RA/0505041.
|
|