|
SIGMA 19 (2023), 014, 23 pages arXiv:2206.15137
https://doi.org/10.3842/SIGMA.2023.014
A Generalization of Zwegers' $\mu$-Function According to the $q$-Hermite-Weber Difference Equation
Genki Shibukawa and Satoshi Tsuchimi
Department of Mathematics, Kobe University, Rokko, 657-8501, Japan
Received July 02, 2022, in final form February 25, 2023; Published online March 23, 2023
Abstract
We introduce a one parameter deformation of the Zwegers' $\mu$-function as the image of $q$-Borel and $q$-Laplace transformations of a fundamental solution for the $q$-Hermite-Weber equation. We further give some formulas for our generalized $\mu$-function, for example, forward and backward shift, translation, symmetry, a difference equation for the new parameter, and bilateral $q$-hypergeometric expressions. From one point of view, the continuous $q$-Hermite polynomials are some special cases of our $\mu$-function, and the Zwegers' $\mu$-function is regarded as a continuous $q$-Hermite polynomial of ''$-1$ degree''.
Key words: Appell-Lerch series; $q$-Boerl transformation; $q$-Laplace transformation; $q$-hypergeometric series; continuous $q$-Hermite polynomial; mock theta functions.
pdf (466 kb)
tex (25 kb)
References
- Andrews G.E., Berndt B.C., Ramanujan's lost notebook. Part V, Springer, Cham, 2018.
- Andrews G.E., Hickerson D., Ramanujan's ''lost'' notebook. VII. The sixth order mock theta functions, Adv. Math. 89 (1991), 60-105.
- Beals R., Wong R., Special functions. A graduate text, Cambridge Stud. Adv. Math., Vol. 126, Cambridge University Press, Cambridge, 2010.
- Bradley-Thrush J.G., Properties of the Appell-Lerch function (I), Ramanujan J. 57 (2022), 291-367.
- Bringmann K., Folsom A., Ono K., Rolen L., Harmonic Maass forms and mock modular forms: theory and applications, Amer. Math. Soc. Colloq. Publ., Vol. 64, Amer. Math. Soc., Providence, RI, 2017.
- Choi Y.S., The basic bilateral hypergeometric series and the mock theta functions, Ramanujan J. 24 (2011), 345-386.
- Garoufalidis S., Wheeler C., Modular $q$-holonomic modules, arXiv:2203.17029.
- Gasper G., Rahman M., Basic hypergeometric series, 2nd ed., Encyclopedia Math. Appl., Vol. 96, Cambridge University Press, Cambridge, 2004.
- Gauss C.F., Summatio quarumdam serierum singularium, Comm. Soc. Reg. Sci. Gottingensis Rec. 1 (1811), 1-40.
- Gordon B., McIntosh R.J., A survey of classical mock theta functions, in Partitions, $q$-Series, and Modular Forms, Dev. Math., Vol. 23, Springer, New York, 2012, 95-144.
- Hickerson D., A proof of the mock theta conjectures, Invent. Math. 94 (1988), 639-660.
- Kang S.Y., Mock Jacobi forms in basic hypergeometric series, Compos. Math. 145 (2009), 553-565, arXiv:0806.1878.
- Koekoek R., Lesky P.A., Swarttouw R.F., Hypergeometric orthogonal polynomials and their $q$-analogues, Springer Monogr. Math., Springer, Berlin, 2010.
- Koelink H.T., Hansen-Lommel orthogonality relations for Jackson's $q$-Bessel functions, J. Math. Anal. Appl. 175 (1993), 425-437.
- Matsuzaka T., Private communication, 2022.
- Ohyama Y., A unified approach to $q$-special functions of the Laplace type, arXiv:1103.5232.
- Ohyama Y., Private communication, 2022.
- Ramis J.P., Sauloy J., Zhang C., Local analytic classification of $q$-difference equations, Astérisque 355 (2013), vi+151 pages, arXiv:0903.0853.
- Suslov S.K., Some orthogonal very-well-poised $_8\phi_7$-functions that generalize Askey-Wilson polynomials, Ramanujan J. 5 (2001), 183-218, arXiv:math.CA/9707213.
- Weil A., Elliptic functions according to Eisenstein and Kronecker, Classics Math., Springer, Berlin, 1999.
- Westerholt-Raum M., ${\rm H}$-harmonic Maaß-Jacobi forms of degree 1, Res. Math. Sci. 2 (2015), art. 12, 34 pages.
- Zhang C., Une sommation discrète pour des équations aux $q$-différences linéaires et à coefficients analytiques: théorie générale et exemples, in Differential Equations and the Stokes Phenomenon, World Sci. Publ., River Edge, NJ, 2002, 309-329.
- Zwegers S.P., Mock theta functions, Ph.D. Thesis, Universiteit Utrecht, 2002, available at https://dspace.library.uu.nl/handle/1874/878.
|
|