Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 19 (2023), 014, 23 pages      arXiv:2206.15137      https://doi.org/10.3842/SIGMA.2023.014

A Generalization of Zwegers' $\mu$-Function According to the $q$-Hermite-Weber Difference Equation

Genki Shibukawa and Satoshi Tsuchimi
Department of Mathematics, Kobe University, Rokko, 657-8501, Japan

Received July 02, 2022, in final form February 25, 2023; Published online March 23, 2023

Abstract
We introduce a one parameter deformation of the Zwegers' $\mu$-function as the image of $q$-Borel and $q$-Laplace transformations of a fundamental solution for the $q$-Hermite-Weber equation. We further give some formulas for our generalized $\mu$-function, for example, forward and backward shift, translation, symmetry, a difference equation for the new parameter, and bilateral $q$-hypergeometric expressions. From one point of view, the continuous $q$-Hermite polynomials are some special cases of our $\mu$-function, and the Zwegers' $\mu$-function is regarded as a continuous $q$-Hermite polynomial of ''$-1$ degree''.

Key words: Appell-Lerch series; $q$-Boerl transformation; $q$-Laplace transformation; $q$-hypergeometric series; continuous $q$-Hermite polynomial; mock theta functions.

pdf (466 kb)   tex (25 kb)  

References

  1. Andrews G.E., Berndt B.C., Ramanujan's lost notebook. Part V, Springer, Cham, 2018.
  2. Andrews G.E., Hickerson D., Ramanujan's ''lost'' notebook. VII. The sixth order mock theta functions, Adv. Math. 89 (1991), 60-105.
  3. Beals R., Wong R., Special functions. A graduate text, Cambridge Stud. Adv. Math., Vol. 126, Cambridge University Press, Cambridge, 2010.
  4. Bradley-Thrush J.G., Properties of the Appell-Lerch function (I), Ramanujan J. 57 (2022), 291-367.
  5. Bringmann K., Folsom A., Ono K., Rolen L., Harmonic Maass forms and mock modular forms: theory and applications, Amer. Math. Soc. Colloq. Publ., Vol. 64, Amer. Math. Soc., Providence, RI, 2017.
  6. Choi Y.S., The basic bilateral hypergeometric series and the mock theta functions, Ramanujan J. 24 (2011), 345-386.
  7. Garoufalidis S., Wheeler C., Modular $q$-holonomic modules, arXiv:2203.17029.
  8. Gasper G., Rahman M., Basic hypergeometric series, 2nd ed., Encyclopedia Math. Appl., Vol. 96, Cambridge University Press, Cambridge, 2004.
  9. Gauss C.F., Summatio quarumdam serierum singularium, Comm. Soc. Reg. Sci. Gottingensis Rec. 1 (1811), 1-40.
  10. Gordon B., McIntosh R.J., A survey of classical mock theta functions, in Partitions, $q$-Series, and Modular Forms, Dev. Math., Vol. 23, Springer, New York, 2012, 95-144.
  11. Hickerson D., A proof of the mock theta conjectures, Invent. Math. 94 (1988), 639-660.
  12. Kang S.Y., Mock Jacobi forms in basic hypergeometric series, Compos. Math. 145 (2009), 553-565, arXiv:0806.1878.
  13. Koekoek R., Lesky P.A., Swarttouw R.F., Hypergeometric orthogonal polynomials and their $q$-analogues, Springer Monogr. Math., Springer, Berlin, 2010.
  14. Koelink H.T., Hansen-Lommel orthogonality relations for Jackson's $q$-Bessel functions, J. Math. Anal. Appl. 175 (1993), 425-437.
  15. Matsuzaka T., Private communication, 2022.
  16. Ohyama Y., A unified approach to $q$-special functions of the Laplace type, arXiv:1103.5232.
  17. Ohyama Y., Private communication, 2022.
  18. Ramis J.P., Sauloy J., Zhang C., Local analytic classification of $q$-difference equations, Astérisque 355 (2013), vi+151 pages, arXiv:0903.0853.
  19. Suslov S.K., Some orthogonal very-well-poised $_8\phi_7$-functions that generalize Askey-Wilson polynomials, Ramanujan J. 5 (2001), 183-218, arXiv:math.CA/9707213.
  20. Weil A., Elliptic functions according to Eisenstein and Kronecker, Classics Math., Springer, Berlin, 1999.
  21. Westerholt-Raum M., ${\rm H}$-harmonic Maaß-Jacobi forms of degree 1, Res. Math. Sci. 2 (2015), art. 12, 34 pages.
  22. Zhang C., Une sommation discrète pour des équations aux $q$-différences linéaires et à coefficients analytiques: théorie générale et exemples, in Differential Equations and the Stokes Phenomenon, World Sci. Publ., River Edge, NJ, 2002, 309-329.
  23. Zwegers S.P., Mock theta functions, Ph.D. Thesis, Universiteit Utrecht, 2002, available at https://dspace.library.uu.nl/handle/1874/878.

Previous article  Next article  Contents of Volume 19 (2023)