Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 19 (2023), 011, 27 pages      arXiv:2205.08197      https://doi.org/10.3842/SIGMA.2023.011

Refined and Generalized $\hat{Z}$ Invariants for Plumbed 3-Manifolds

Song Jin Ri ab
a) ICTP, Strada Costiera 11, Trieste 34151, Italy
b) SISSA, Via Bonomea 265, Trieste 34136, Italy

Received September 05, 2022, in final form February 28, 2023; Published online March 19, 2023

Abstract
We introduce a two-variable refinement $\hat{Z}_a(q,t)$ of plumbed 3-manifold invariants $\hat{Z}_a(q)$, which were previously defined for weakly negative definite plumbed 3-manifolds. We also provide a number of explicit examples in which we argue the recovering process to obtain $\hat{Z}_a(q)$ from $\hat{Z}_a(q,t)$ by taking a limit $ t\rightarrow 1 $. For plumbed 3-manifolds with two high-valency vertices, we analytically compute the limit by using the explicit integer solutions of quadratic Diophantine equations in two variables. Based on numerical computations of the recovered $\hat{Z}_a(q)$ for plumbings with two high-valency vertices, we propose a conjecture that the recovered $\hat{Z}_a(q)$, if exists, is an invariant for all tree plumbed 3-manifolds. Finally, we provide a formula of the $\hat{Z}_a(q,t)$ for the connected sum of plumbed 3-manifolds in terms of those for the components.

Key words: $q$-series; $\hat{Z}$ invariants; plumbed 3-manifolds.

pdf (794 kb)   tex (326 kb)  

References

  1. Akhmechet R., Johnson P.K., Krushkal V., Lattice cohomology and $q$-series invariants of 3-manifolds, J. Reine Angew. Math. 796 (2023), 269-299, arXiv:2109.14139.
  2. Berndt B.C., Hafner J.L., Two remarkable doubly exponential series transformations of Ramanujan, Proc. Indian Acad. Sci. Math. Sci. 104 (1994), 245-252.
  3. Cheng M.C.N., Chun S., Ferrari F., Gukov S., Harrison S.M., 3d modularity, J. High Energy Phys. 2019 (2019), no. 10, 010, 93 pages, arXiv:1809.10148.
  4. Costantino F., Gukov S., Putrov P., Non-semisimple TQFT's and BPS $q$-series, SIGMA 19 (2023), 010, 71 pages, arXiv:2107.14238.
  5. Ekholm T., Gruen A., Gukov S., Kucharski P., Park S., Sułkowski P., $\widehat{Z}$ at large $N$: from curve counts to quantum modularity, Comm. Math. Phys. 396 (2022), 143-186, arXiv:2005.13349.
  6. Gukov S., Manolescu C., A two-variable series for knot complements, Quantum Topol. 12 (2021), 1-109, arXiv:1904.06057.
  7. Gukov S., Pei D., Putrov P., Vafa C., BPS spectra and 3-manifold invariants, J. Knot Theory Ramifications 29 (2020), 2040003, 85 pages, arXiv:1701.06567.
  8. Gukov S., Putrov P., Vafa C., Fivebranes and 3-manifold homology, J. High Energy Phys. 2017 (2017), no. 7, 071, 81 pages, arXiv:1602.05302.
  9. Khovanov M., A categorification of the Jones polynomial, Duke Math. J. 101 (2000), 359-426, arXiv:math.QA/9908171.
  10. Lickorish W.B.R., A representation of orientable combinatorial $3$-manifolds, Ann. of Math. 76 (1962), 531-540.
  11. Neumann W.D., A calculus for plumbing applied to the topology of complex surface singularities and degenerating complex curves, Trans. Amer. Math. Soc. 268 (1981), 299-344.
  12. Ozsváth P., Szabó Z., On the Floer homology of plumbed three-manifolds, Geom. Topol. 7 (2003), 185-224, arXiv:math.SG/0203265.
  13. Park S., Higher rank $\hat{Z}$ and $F_K$, SIGMA 16 (2020), 044, 17 pages, arXiv:1909.13002.
  14. Reshetikhin N., Turaev V.G., Invariants of $3$-manifolds via link polynomials and quantum groups, Invent. Math. 103 (1991), 547-597.
  15. Sawilla R.E., Silvester A.K., Williams H.C., A new look at an old equation, in Algorithmic Number Theory, Lecture Notes in Comput. Sci., Vol. 5011, Springer, Berlin, 2008, 37-59.
  16. Wallace A.H., Modifications and cobounding manifolds, Canadian J. Math. 12 (1960), 503-528.
  17. Witten E., Quantum field theory and the Jones polynomial, Comm. Math. Phys. 121 (1989), 351-399.

Previous article  Next article  Contents of Volume 19 (2023)