|
SIGMA 19 (2023), 010, 71 pages arXiv:2107.14238
https://doi.org/10.3842/SIGMA.2023.010
Contribution to the Special Issue on Enumerative and Gauge-Theoretic Invariants in honor of Lothar Göttsche on the occasion of his 60th birthday
Non-Semisimple TQFT's and BPS $q$-Series
Francesco Costantino a, Sergei Gukov b and Pavel Putrov c
a) Institut de Mathématiques de Toulouse, 118 route de Narbonne, F-31062 Toulouse, France
b) Walter Burke Institute for Theoretical Physics, California Institute of Technology, Pasadena, CA 91125, USA
c) The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, Trieste 34151, Italy
Received January 21, 2022, in final form February 10, 2023; Published online March 15, 2023
Abstract
We propose and in some cases prove a precise relation between 3-manifold invariants associated with quantum groups at roots of unity and at generic $q$. Both types of invariants are labeled by extra data which plays an important role in the proposed relation. Bridging the two sides - which until recently were developed independently, using very different methods - opens many new avenues. In one direction, it allows to study (and perhaps even to formulate) $q$-series invariants labeled by spinc structures in terms of non-semisimple invariants. In the opposite direction, it offers new insights and perspectives on various elements of non-semisimple TQFT's, bringing the latter into one unifying framework with other invariants of knots and 3-manifolds that recently found realization in quantum field theory and in string theory.
Key words: 3-manifold invariants; knot invariants; TQFT.
pdf (1079 kb)
tex (105 kb)
References
- Akutsu Y., Deguchi T., Ohtsuki T., Invariants of colored links, J. Knot Theory Ramifications 1 (1992), 161-184.
- Andersen J.E., Kashaev R.M., Quantum Teichmüller theory and TQFT, in XVIIth International Congress on Mathematical Physics, World Sci. Publ., Hackensack, NJ, 2014, 684-692.
- Andersen J.E., Mistegaard W.E., Resurgence analysis of quantum invariants of Seifert fibered homology spheres, J. Lond. Math. Soc. 105 (2022), 709-764, arXiv:1811.05376.
- Andersen J.E., Ueno K., Construction of the Witten-Reshetikhin-Turaev TQFT from conformal field theory, Invent. Math. 201 (2015), 519-559, arXiv:1110.5027.
- Barkeshli M., Bonderson P., Cheng M., Wang Z., Symmetry fractionalization, defects, and gauging of topological phases, Phys. Rev. B 100 (2019), 115147, 99 pages, arXiv:1410.4540.
- Beliakova A., Hikami K., Non-semisimple invariants and Habiro's series, in Topology and Geometry - a Collection of Essays Dedicated to Vladimir G. Turaev, IRMA Lect. Math. Theor. Phys., Vol. 33, Eur. Math. Soc., Zürich, 2021, 161-174, arXiv:2009.13285.
- Benini F., Córdova C., Hsin P.S., On 2-group global symmetries and their anomalies, J. High Energy Phys. 2019 (2019), no. 3, 118, 70 pages, arXiv:1803.09336.
- Berezin F.A., Quantization, Math. USSR Izv. 8 (1974), 1109-1165.
- Bezrukavnikov R., Finkelberg M., Mirković I., Equivariant homology and $K$-theory of affine Grassmannians and Toda lattices, Compos. Math. 141 (2005), 746-768, arXiv:math.AG/0306413.
- Blanchet C., Invariants on three-manifolds with spin structure, Comment. Math. Helv. 67 (1992), 406-427.
- Blanchet C., Costantino F., Geer N., Patureau-Mirand B., Non semi-simple $\mathfrak{sl}(2)$ quantum invariants, spin case, Acta Math. Vietnam. 39 (2014), 481-495, arXiv:1405.3490.
- Blanchet C., Costantino F., Geer N., Patureau-Mirand B., Non-semi-simple TQFTs, Reidemeister torsion and Kashaev's invariants, Adv. Math. 301 (2016), 1-78, arXiv:1404.7289.
- Blanchet C., Habegger N., Masbaum G., Vogel P., Topological quantum field theories derived from the Kauffman bracket, Topology 34 (1995), 883-927.
- Braverman A., Finkelberg M., Nakajima H., Towards a mathematical definition of Coulomb branches of 3-dimensional $\mathcal{N}=4$ gauge theories, II, Adv. Theor. Math. Phys. 22 (2018), 1071-1147, arXiv:1601.03586.
- Braverman A., Finkelberg M., Nakajima H., Coulomb branches of $3d$ $\mathcal{N}=4$ quiver gauge theories and slices in the affine Grassmannian (with two appendices by Braverman, Finkelberg, Joel Kamnitzer, Ryosuke Kodera, Nakajima, Ben Webster and Alex Weeke), Adv. Theor. Math. Phys. 23 (2019), 75-166, arXiv:1604.03625.
- Brown J., Dimofte T., Garoufalidis S., Geer N., The ADO invariants are a $q$-holonomic family, arXiv:2005.08176.
- Chae J., Knot complement, ADO invariants and their deformations for torus knots, SIGMA 16 (2020), 134, 16 pages, arXiv:2007.13277.
- Chen Q., Kuppum S., Srinivasan P., On the relation between the WRT invariant and the Hennings invariant, Math. Proc. Cambridge Philos. Soc. 146 (2009), 151-163, arXiv:0709.2318.
- Cheng M.C., Chun S., Ferrari F., Gukov S., Harrison S.M., 3d modularity, J. High Energy Phys. 2019 (2019), no. 10, 010, 93 pages, arXiv:1809.10148.
- Chun S., Gukov S., Park S., Sopenko N., 3d-3d correspondence for mapping tori, J. High Energy Phys. 2020 (2020), no. 9, 152, 59 pages, arXiv:1911.08456.
- Chun S., Gukov S., Roggenkamp D., Junctions of surface operators and categorification of quantum groups, in Categorification in Geometry, Topology, and Physics, Contemp. Math., Vol. 684, Amer. Math. Soc., Providence, RI, 2017, 87-146, arXiv:1507.06318.
- Chung H.-J., BPS invariants for Seifert manifolds, J. High Energy Phys. 2020 (2020), no. 3, 113, 66 pages, arXiv:1811.08863.
- Chung H.-J., Resurgent analysis for some 3-manifold invariants, J. High Energy Phys. 2021 (2021), no. 5, 106, 39 pages, arXiv:2008.02786.
- Costantino F., Geer N., Patureau-Mirand B., Quantum invariants of 3-manifolds via link surgery presentations and non-semi-simple categories, J. Topol. 7 (2014), 1005-1053, arXiv:1202.3553.
- Costantino F., Geer N., Patureau-Mirand B., Relations between Witten-Reshetikhin-Turaev and nonsemisimple $\mathfrak{sl}(2)$ 3-manifold invariants, Algebr. Geom. Topol. 15 (2015), 1363-1386, arXiv:1310.2735.
- Costello K., Creutzig T., Gaiotto D., Higgs and Coulomb branches from vertex operator algebras, J. High Energy Phys. 2019 (2019), no. 3, 066, 48 pages, arXiv:1811.03958.
- Creutzig T., Dimofte T., Garner N., Geer N., A QFT for non-semisimple TQFT, arXiv:2112.01559.
- De Renzi M., Geer N., Patureau-Mirand B., Nonsemisimple quantum invariants and TQFTs from small and unrolled quantum groups, Algebr. Geom. Topol. 20 (2020), 3377-3422.
- Dedushenko M., Gukov S., Putrov P., Vertex algebras and 4-manifold invariants, in Geometry and Physics, Vol. I, Oxford University Press, Oxford, 2018, 249-317, arXiv:1705.01645.
- Deloup F., Massuyeau G., Quadratic functions and complex spin structures on three-manifolds, Topology 44 (2005), 509-555, arXiv:math.GT/0207188.
- Deloup F., Turaev V., On reciprocity, J. Pure Appl. Algebra 208 (2007), 153-158, arXiv:math.AC/0512050.
- Dimofte T., Gukov S., Lenells J., Zagier D., Exact results for perturbative Chern-Simons theory with complex gauge group, Commun. Number Theory Phys. 3 (2009), 363-443, arXiv:0903.2472.
- Ekholm T., Gruen A., Gukov S., Kucharski P., Park S., Sułkowski P., $\widehat{Z}$ at large $N$: from curve counts to quantum modularity, Comm. Math. Phys. 396 (2022), 143-186, arXiv:2005.13349.
- Feigin B., Gukov S., Reshetikhin N., Quantum groups, log-VOAs, and integrable logarithmic QFTs, unpublished.
- Ferrari F., Putrov P., Supergroups, $q$-series and 3-manifolds, arXiv:2009.14196.
- Fuji H., Iwaki K., Murakami H., Terashima Y., Witten-Reshetikhin-Turaev function for a knot in Seifert manifolds, Comm. Math. Phys. 386 (2021), 225-251, arXiv:2007.15872.
- Gaiotto D., Kapustin A., Seiberg N., Willett B., Generalized global symmetries, J. High Energy Phys. 2015 (2015), no. 2, 172, 62 pages, arXiv:1412.5148.
- Gukov S., Three-dimensional quantum gravity, Chern-Simons theory, and the A-polynomial, Comm. Math. Phys. 255 (2005), 577-627, arXiv:hep-th/0306165.
- Gukov S., Hsin P.-S., Nakajima H., Park S., Pei D., Sopenko N., Rozansky-Witten geometry of Coulomb branches and logarithmic knot invariants, J. Geom. Phys. 168 (2021), 104311, 22 pages, arXiv:2005.05347.
- Gukov S., Manolescu C., A two-variable series for knot complements, Quantum Topol. 12 (2021), 1-109, arXiv:1904.06057.
- Gukov S., Marino M., Putrov P., Resurgence in complex Chern-Simons theory, arXiv:1605.07615.
- Gukov S., Park S., Putrov P., Cobordism invariants from BPS $q$-series, Ann. Henri Poincaré 22 (2021), 4173-4203, arXiv:2009.11874.
- Gukov S., Pei D., Putrov P., Vafa C., BPS spectra and 3-manifold invariants, J. Knot Theory Ramifications 29 (2020), 2040003, 85 pages, arXiv:1701.06567.
- Gukov S., Putrov P., Vafa C., Fivebranes and 3-manifold homology, J. High Energy Phys. 2017 (2017), no. 7, 071, 81 pages, arXiv:1602.05302.
- Gukov S., Witten E., Gauge theory, ramification, and the geometric Langlands program, in Current Developments in Mathematics, Int. Press, Somerville, MA, 2008, 35-180, arXiv:hep-th/0612073.
- Gukov S., Witten E., Branes and quantization, Adv. Theor. Math. Phys. 13 (2009), 1445-1518, arXiv:0809.0305.
- Hitchin N.J., Flat connections and geometric quantization, Comm. Math. Phys. 131 (1990), 347-380.
- Jeffrey L.C., Chern-Simons-Witten invariants of lens spaces and torus bundles, and the semiclassical approximation, Comm. Math. Phys. 147 (1992), 563-604.
- Kapranov M., Rozansky-Witten invariants via Atiyah classes, Compositio Math. 115 (1999), 71-113, arXiv:alg-geom/9704009.
- Kirby R., Melvin P., The $3$-manifold invariants of Witten and Reshetikhin-Turaev for $\mathfrak{sl}(2,{\mathbb C})$, Invent. Math. 105 (1991), 473-545.
- Kirby R., Taylor L., ${\rm Pin}$ structures on low-dimensional manifolds, in Geometry of Low-Dimensional Manifolds, 2 (Durham, 1989), London Math. Soc. Lecture Note Ser., Vol. 151, Cambridge University Press, Cambridge, 1990, 177-242.
- Kirillov A.N., Reshetikhin N.Yu., Representations of the algebra ${U}_q({\rm sl}(2)),q$-orthogonal polynomials and invariants of links, in Infinite-Dimensional Lie Algebras and Groups (Luminy-Marseille, 1988), Adv. Ser. Math. Phys., Vol. 7, World Sci. Publ., Teaneck, NJ, 1989, 285-339.
- Kontsevich M., Rozansky-Witten invariants via formal geometry, Compositio Math. 115 (1999), 115-127, arXiv:dg-ga/9704009.
- Kostant B., Quantization and unitary representations. I. Prequantization, in Lectures in Modern Analysis and Applications, III, Lecture Notes in Math., Vol. 170, Springer, Berlin, 1970, 87-208.
- Kucharski P., Quivers for 3-manifolds: the correspondence, BPS states, and 3d $\mathcal{N} = 2$ theories, J. High Energy Phys. 2020 (2020), no. 9, 075, 26 pages, arXiv:2005.13394.
- Kyle R.H., Branched covering spaces and the quadratic forms of links, Ann. of Math. 59 (1954), 539-548.
- Laszlo Y., Hitchin's and WZW connections are the same, J. Differential Geom. 49 (1998), 547-576.
- Lawrence R., Zagier D., Modular forms and quantum invariants of $3$-manifolds, Asian J. Math. 3 (1999), 93-107.
- Mikhaylov V., Analytic torsion, 3d mirror symmetry and supergroup Chern-Simons theories, arXiv:1505.03130.
- Mori A., Murakami Y., Witten-Reshetikhin-Turaev invariants, homological blocks, and quantum modular forms for unimodular plumbing H-graphs, SIGMA 18 (2022), 034, 20 pages, arXiv:2110.10958.
- Murakami J., A state model for the multivariable Alexander polynomial, Pacific J. Math. 157 (1993), 109-135.
- Murakami J., Colored Alexander invariants and cone-manifolds, Osaka J. Math. 45 (2008), 541-564.
- Nakajima H., Introduction to a provisional mathematical definition of Coulomb branches of 3-dimensional $\mathcal{N}=4$ gauge theories, in Modern Geometry: a Celebration of the Work of Simon Donaldson, Proc. Sympos. Pure Math., Vol. 99, Amer. Math. Soc., Providence, RI, 2018, 193-211, arXiv:1706.05154.
- Ohtsuki T., Quantum invariants. A study of knots, 3-manifolds, and their sets, Series on Knots and Everything, Vol. 29, World Sci. Publ. Co., Inc., River Edge, NJ, 2002.
- Park S., Higher rank $\hat{Z}$ and $F_K$, SIGMA 16 (2020), 044, 17 pages, arXiv:1909.13002.
- Park S., Large color $R$-matrix for knot complements and strange identities, J. Knot Theory Ramifications 29 (2020), 2050097, 32 pages, arXiv:2004.02087.
- Park S., Inverted state sums, inverted Habiro series, and indefinite theta functions, arXiv:2106.03942.
- Qiu J., Rozansky-Witten theory, localised then tilted, Comm. Math. Phys. 389 (2022), 813-874, arXiv:2011.05375.
- Reshetikhin N., Turaev V.G., Invariants of $3$-manifolds via link polynomials and quantum groups, Invent. Math. 103 (1991), 547-597.
- Souriau J.M., Structure of dynamical systems, Progr. Math., Vol. 149, Birkhäuser Boston, Inc., Boston, MA, 1997.
- Tsuchiya A., Ueno K., Yamada Y., Conformal field theory on universal family of stable curves with gauge symmetries, in Integrable Systems in Quantum Field Theory and statistical Mechanics, Adv. Stud. Pure Math., Vol. 19, Academic Press, Boston, MA, 1989, 459-566.
- Turaev V., Euler structures, nonsingular vector fields, and Reidemeister-type torsions, Math. USSR Izv. 34 (1990), 627-662.
- Turaev V., Torsion invariants of ${\rm Spin}^c$-structures on $3$-manifolds, Math. Res. Lett. 4 (1997), 679-695.
- Turaev V., Torsions of 3-manifolds, in Invariants of Knots and 3-Manifolds (Kyoto, 2001), Geom. Topol. Monogr., Vol. 4, Geom. Topol. Publ., Coventry, 2002, 295-302, arXiv:math.GT/0211084.
- Vafa C., Witten E., A strong coupling test of $S$-duality, Nuclear Phys. B 431 (1994), 3-77, arXiv:hep-th/9408074.
- Willetts S., A unification of the ADO and colored Jones polynomials of a knot, Quantum Topol. 13 (2022), 137-181, arXiv:2003.09854.
- Witten E., Quantum field theory and the Jones polynomial, Comm. Math. Phys. 121 (1989), 351-399.
- Witten E., Fivebranes and knots, Quantum Topol. 3 (2012), 1-137, arXiv:1101.3216.
- Zagier D., Quantum modular forms, in Quanta of Maths, Clay Math. Proc., Vol. 11, Amer. Math. Soc., Providence, RI, 2010, 659-675.
|
|