|
SIGMA 19 (2023), 008, 35 pages arXiv:2206.03986
https://doi.org/10.3842/SIGMA.2023.008
An Askey-Wilson Algebra of Rank 2
Wolter Groenevelt and Carel Wagenaar
Delft Institute of Applied Mathematics, Technische Universiteit Delft, PO Box 5031, 2600 GA Delft, The Netherlands
Received June 30, 2022, in final form February 15, 2023; Published online March 05, 2023
Abstract
An algebra is introduced which can be considered as a rank 2 extension of the Askey-Wilson algebra. Relations in this algebra are motivated by relations between coproducts of twisted primitive elements in the two-fold tensor product of the quantum algebra $\mathcal{U}_{q}(\mathfrak{sl}(2,\mathbb C))$. It is shown that bivariate $q$-Racah polynomials appear as overlap coefficients of eigenvectors of generators of the algebra. Furthermore, the corresponding $q$-difference operators are calculated using the defining relations of the algebra, showing that it encodes the bispectral properties of the bivariate $q$-Racah polynomials.
Key words: Askey-Wilson algebra; $q$-Racah polynomials.
pdf (657 kb)
tex (42 kb)
References
- Askey R., Wilson J., Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials, Mem. Amer. Math. Soc. 54 (1985), iv+55 pages.
- Baseilhac P., Vinet L., Zhedanov A., The $q$-Onsager algebra and multivariable $q$-special functions, J. Phys. A 50 (2017), 395201, 22 pages, arXiv:1611.09250.
- Cooke J., Lacabanne A., Higher rank Askey-Wilson Algebras as Skein algebras, arXiv:2205.04414.
- Crampé N., Frappat L., Gaboriaud J., d'Andecy L.P., Ragoucy E., Vinet L., The Askey-Wilson algebra and its avatars, J. Phys. A 54 (2021), 063001, 32 pages, arXiv:2009.14815.
- Crampé N., Frappat L., Ragoucy E., Representations of the rank two Racah algebra and orthogonal multivariate polynomials, Linear Algebra Appl. 664 (2023), 165-215, arXiv:2206.01031.
- Crampé N., Gaboriaud J., Vinet L., Zaimi M., Revisiting the Askey-Wilson algebra with the universal $R$-matrix of $U_q(\mathfrak{sl}_2)$, J. Phys. A 53 (2020), 05LT01, 10 pages, arXiv:1908.04806.
- De Bie H., De Clercq H., The $q$-Bannai-Ito algebra and multivariate $(-q)$-Racah and Bannai-Ito polynomials, J. Lond. Math. Soc. 103 (2021), 71-126, arXiv:1902.07883.
- De Bie H., De Clercq H., van de Vijver W., The higher rank $q$-deformed Bannai-Ito and Askey-Wilson algebra, Comm. Math. Phys. 374 (2020), 277-316, arXiv:1805.06642.
- De Clercq H., Higher rank relations for the Askey-Wilson and $q$-Bannai-Ito algebra, SIGMA 15 (2019), 099, 32 pages, arXiv:1908.11654.
- Gasper G., Rahman M., Basic hypergeometric series, 2nd ed., Encyclopedia Math. Appl., Vol. 96, Cambridge University Press, Cambridge, 2004.
- Gasper G., Rahman M., Some systems of multivariable orthogonal Askey-Wilson polynomials, in Theory and Applications of Special Functions, Dev. Math., Vol. 13, Springer, New York, 2005, 209-219, arXiv:math.CA/0410249.
- Gasper G., Rahman M., Some systems of multivariable orthogonal $q$-Racah polynomials, Ramanujan J. 13 (2007), 389-405, arXiv:math.CA/0410250.
- Genest V.X., Iliev P., Vinet L., Coupling coefficients of $\mathfrak{su}_q(1,1)$ and multivariate $q$-Racah polynomials, Nuclear Phys. B 927 (2018), 97-123, arXiv:1702.04626.
- Granovskii Y.I., Zhedanov A.S., Hidden symmetry of the Racah and Clebsch-Gordan problems for the quantum algebra $\mathfrak{sl}_q(2)$, arXiv:hep-th/9304138.
- Granovskii Y.I., Zhedanov A.S., Linear covariance algebra for ${\rm SL}_q(2)$, J. Phys. A 26 (1993), L357-L359.
- Groenevelt W., Bilinear summation formulas from quantum algebra representations, Ramanujan J. 8 (2004), 383-416, arXiv:math.QA/0201272.
- Groenevelt W., A quantum algebra approach to multivariate Askey-Wilson polynomials, Int. Math. Res. Not. 2021 (2021), 3224-3266, arXiv:1809.04327.
- Huang H.-W., Finite-dimensional irreducible modules of the universal Askey-Wilson algebra, Comm. Math. Phys. 340 (2015), 959-984, arXiv:1210.1740.
- Huang H.-W., An embedding of the universal Askey-Wilson algebra into $U_q(\mathfrak{sl}_2)\otimes U_q(\mathfrak{sl}_2)\otimes U_q(\mathfrak{sl}_2)$, Nuclear Phys. B 922 (2017), 401-434, arXiv:1611.02130.
- Iliev P., Bispectral commuting difference operators for multivariable Askey-Wilson polynomials, Trans. Amer. Math. Soc. 363 (2011), 1577-1598, arXiv:0801.4939.
- Koekoek R., Lesky P.A., Swarttouw R.F., Hypergeometric orthogonal polynomials and their $q$-analogues, Springer Monogr. Math., Springer, Berlin, 2010.
- Koelink E., Eight lectures on quantum groups and $q$-special functions, Rev. Colombiana Mat. 30 (1996), 93-180.
- Koelink H.T., Van Der Jeugt J., Convolutions for orthogonal polynomials from Lie and quantum algebra representations, SIAM J. Math. Anal. 29 (1998), 794-822, arXiv:q-alg/9607010.
- Koornwinder T.H., Askey-Wilson polynomials as zonal spherical functions on the ${\rm SU}(2)$ quantum group, SIAM J. Math. Anal. 24 (1993), 795-813.
- Koornwinder T.H., The relationship between Zhedanov's algebra ${\rm AW}(3)$ and the double affine Hecke algebra in the rank one case, SIGMA 3 (2007), 063, 15 pages, arXiv:math.QA/0612730.
- Koornwinder T.H., Zhedanov's algebra $\rm AW(3)$ and the double affine Hecke algebra in the rank one case. II. The spherical subalgebra, SIGMA 4 (2008), 052, 17 pages, arXiv:0711.2320.
- Post S., Walter A., A higher rank extension of the Askey-Wilson algebra, arXiv:1705.01860.
- Terwilliger P., Leonard pairs from 24 points of view, Rocky Mountain J. Math. 32 (2002), 827-888, arXiv:math.RA/0406577.
- Terwilliger P., The universal Askey-Wilson algebra, SIGMA 7 (2011), 069, 24 pages, arXiv:1104.2813.
- Terwilliger P., The universal Askey-Wilson algebra and the equitable presentation of $U_q(\mathfrak{sl}_2)$, SIGMA 7 (2011), 099, 26 pages, arXiv:1107.3544.
- Terwilliger P., The universal Askey-Wilson algebra and DAHA of type $(C^\vee_1,C_1)$, SIGMA 9 (2013), 047, 40 pages, arXiv:1202.4673.
- Terwilliger P., The $q$-Onsager algebra and the universal Askey-Wilson algebra, SIGMA 14 (2018), 044, 18 pages, arXiv:1801.06083.
- Terwilliger P., Vidunas R., Leonard pairs and the Askey-Wilson relations, J. Algebra Appl. 3 (2004), 411-426, arXiv:math.QA/0305356.
- Vid unas R., Normalized Leonard pairs and Askey-Wilson relations, Linear Algebra Appl. 422 (2007), 39-57, arXiv:math.RA/0505041.
- Zhedanov A.S., ''Hidden symmetry'' of Askey-Wilson polynomials, Theoret. and Math. Phys. 89 (1991), 1146-1157.
|
|