|
SIGMA 19 (2023), 007, 30 pages arXiv:2206.14403
https://doi.org/10.3842/SIGMA.2023.007
On the Fourth-Order Lattice Gel'fand-Dikii Equations
Guesh Yfter Tela a, Song-Lin Zhao b and Da-Jun Zhang a
a) Department of Mathematics, Shanghai University, Shanghai 200444, P.R. China
b) Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou 310023, P.R. China
Received July 02, 2022, in final form February 06, 2023; Published online February 21, 2023
Abstract
The fourth-order lattice Gel'fand-Dikii equations in quadrilateral form are investigated. Utilizing the direct linearization approach, we present some equations of the extended lattice Gel'fand-Dikii type. These equations are related to a quartic discrete dispersion relation and can be viewed as higher-order members of the extended lattice Boussinesq type equations. The resulting lattice equations given here are in five-component form, and some of them are multi-dimensionally consistent by introducing extra equations. Lax integrability is discussed both by direct linearization scheme and also through multi-dimensional consistent property. Some reductions of the five-component lattice equations to the four-component forms are considered.
Key words: lattice Gel'fand-Dikii type equation; direct linearization approach; multi-dimensional consistency; Lax pair.
pdf (614 kb)
tex (40 kb)
References
- Adler V.E., Bobenko A.I., Suris Yu.B., Classification of integrable equations on quad-graphs. The consistency approach, Comm. Math. Phys. 233 (2003), 513-543, arXiv:nlin.SI/0202024.
- Atkinson J., Integrable lattice equation: connection to the Möbius group, Bäcklund transformations and solutions, Ph.D. Thesis, University of Leeds, 2008, available at https://etheses.whiterose.ac.uk/9081/1/thesis.pdf.
- Atkinson J., Lobb S.B., Nijhoff F.W., An integrable multicomponent quad-equation and its Lagrangian formulation, Theoret. and Math. Phys. 173 (2012), 1644-1653, arXiv:1204.5521.
- Błaszak M., Marciniak K., $r$-matrix approach to lattice integrable systems, J. Math. Phys. 35 (1994), 4661-4682.
- Bobenko A.I., Suris Yu.B., Integrable systems on quad-graphs, Int. Math. Res. Not. 2002 (2002), 573-611, arXiv:nlin.SI/0110004.
- Bridgman T., Hereman W., Quispel G.R.W., van der Kamp P.H., Symbolic computation of Lax pairs of partial difference equations using consistency around the cube, Found. Comput. Math. 13 (2013), 517-544, arXiv:1308.5473.
- Chen K., Zhang C., Zhang D.-J., Squared eigenfunction symmetry of the $\rm D\Delta mKP$ hierarchy and its constraint, Stud. Appl. Math. 147 (2021), 752-791, arXiv:1904.08108.
- Doliwa A., Non-commutative lattice-modified Gel'fand-Dikii systems, J. Phys. A 46 (2013), 205202, 14 pages, arXiv:1302.5594.
- Feng W., Zhao S.-L., Zhang D.-J., Exact solutions to lattice Boussinesq-type equations, J. Nonlinear Math. Phys. 19 (2012), 1250031, 15 pages.
- Fokas A.S., Ablowitz M.J., Linearization of the Korteweg-de Vries and Painlevé ${\rm II}$ equations, Phys. Rev. Lett. 47 (1981), 1096-1100.
- Fu W., Direct linearisation of the discrete-time two-dimensional Toda lattices, J. Phys. A 51 (2018), 334001, 21 pages, arXiv:1802.06452.
- Fu W., Direct linearization approach to discrete integrable systems associated with $\mathbb{Z}_{\mathcal {N}}$ graded Lax pairs, Proc. R. Soc. Lond. A 476 (2020), 20200036, 17 pages, arXiv:1904.00826.
- Fu W., Nijhoff F.W., Direct linearizing transform for three-dimensional discrete integrable systems: the lattice AKP, BKP and CKP equations, Proc. R. Soc. Lond. A 473 (2017), 20160195, 22 pages, arXiv:1612.04711.
- Fu W., Nijhoff F.W., On non-autonomous differential-difference AKP, BKP and CKP equations, Proc. R. Soc. Lond. A 477 (2021), 20200717, 20 pages, arXiv:2009.02469.
- Gel'fand I.M., Dikii L.A., Fractional powers of operators and Hamiltonian systems, Funct. Anal. Appl. 10 (1976), 259-273.
- Gel'fand I.M., Dikii L.A., The resolvent and Hamiltonian systems, Funct. Anal. Appl. 11 (1977), 93-105.
- Hietarinta J., Boussinesq-like multi-component lattice equations and multi-dimensional consistency, J. Phys. A 44 (2011), 165204, 22 pages, arXiv:1011.1978.
- Hietarinta J., Joshi N., Nijhoff F.W., Discrete systems and integrability, Cambridge Texts Appl. Math., Cambridge University Press, Cambridge, 2016.
- Hietarinta J., Zhang D.-J., Soliton solutions for ABS lattice equations. II. Casoratians and bilinearization, J. Phys. A 42 (2009), 404006, 30 pages, arXiv:0903.1717.
- Hietarinta J., Zhang D.-J., Multisoliton solutions to the lattice Boussinesq equation, J. Math. Phys. 51 (2010), 033505, 12 pages, arXiv:0906.3955.
- Hietarinta J., Zhang D.-J., Soliton taxonomy for a modification of the lattice Boussinesq equation, SIGMA 7 (2011), 061, 14 pages, arXiv:1105.4413.
- Hietarinta J., Zhang D.-J., Discrete Boussinesq-type equations, in Nonlinear Systems and their Remarkable Mathematical Structures. Vol. 3, CRC Press, Boca Raton, FL, 2022, 54-101, arXiv:2012.00495.
- Kuperschmidt B.A., Discrete Lax equations and differential-difference calculus, Astérisque 123 (1985), 212 pages.
- Lobb S.B., Nijhoff F.W., Lagrangian multiform structure for the lattice Gel'fand-Dikii hierarchy, J. Phys. A 43 (2010), 072003, 11 pages, arXiv:0911.1234.
- Mesfun M., Zhao S.-L., Cauchy matrix scheme for semidiscrete lattice Korteweg-de Vries-type equations, Theoret. and Math. Phys. 211 (2022), 483-497.
- Nijhoff F.W., Discrete Painlevé equations and symmetry reduction on the lattice, in Discrete Integrable Geometry and Physics (Vienna, 1996), Oxford Lecture Ser. Math. Appl., Vol. 16, Oxford Univ. Press, New York, 1999, 209-234.
- Nijhoff F.W., Lax pair for the Adler (lattice Krichever-Novikov) system, Phys. Lett. A 297 (2002), 49-58, arXiv:nlin/0110027.
- Nijhoff F.W., Capel H., The discrete Korteweg-de Vries equation, Acta Appl. Math. 39 (1995), 133-158.
- Nijhoff F.W., Papageorgiou V.G., Capel H.W., Quispel G.R.W., The lattice Gel'fand-Dikii hierarchy, Inverse Problems 8 (1992), 597-621.
- Nijhoff F.W., Quispel G.R.W., Capel H.W., Direct linearization of nonlinear difference-difference equations, Phys. Lett. A 97 (1983), 125-128.
- Nijhoff F.W., Sun Y.-Y., Zhang D.-J., Elliptic solutions of Boussinesq type lattice equations and the elliptic $N$th root of unity, Comm. Math. Phys., to appear, arXiv:1909.02948.
- Nijhoff F.W., Walker A.J., The discrete and continuous Painlevé VI hierarchy and the Garnier systems, Glasg. Math. J. 43 (2001), 109-123, arXiv:nlin.SI/0001054.
- Quispel G.R.W., Nijhoff F.W., Capel H.W., van der Linden J., Linear integral equations and nonlinear difference-difference equations, Phys. A 125 (1984), 344-380.
- Santini P.M., Ablowitz M.J., Fokas A.S., The direct linearization of a class of nonlinear evolution equations, J. Math. Phys. 25 (1984), 2614-2619.
- Tela G.Y., Zhang D.-J., Integrability and solutions for a fourth-order lattice Gel'fand-Dikii equation, Appl. Math. Lett. 135 (2023), 108424, 8 pages.
- Tongas A., Nijhoff F.W., The Boussinesq integrable system: compatible lattice and continuum structures, Glasg. Math. J. 47 (2005), 205-219, arXiv:nlin.SI/0402053.
- Vermeeren M., A variational perspective on continuum limits of ABS and lattice GD equations, SIGMA 15 (2019), 044, 35 pages, arXiv:1811.01855.
- Wahlquist H.D., Estabrook F.B., Bäcklund transformation for solutions of the Korteweg-de Vries equation, Phys. Rev. Lett. 31 (1973), 1386-1390.
- Walker A.J., Similarity reductions and integrable lattice equations, Ph.D. Thesis, University of Leeds, 2001, available at https://etheses.whiterose.ac.uk/7190/1/Walker_AJ_Applied_Mathematics_PhD_2001.pdf.
- Xu D.-D., Zhang D.-J., Zhao S.-L., The Sylvester equation and integrable equations: I. The Korteweg-de Vries system and sine-Gordon equation, J. Nonlinear Math. Phys. 21 (2014), 382-406, arXiv:1401.5949.
- Yin Y., Fu W., Linear integral equations and two-dimensional Toda systems, Stud. Appl. Math. 147 (2021), 1146-1193, arXiv:2104.06123.
- Zhang D.-J., The discrete Burgers equation, Partial Differ. Equ. Appl. Math. 5 (2022), 100362, 5 pages.
- Zhang D.-J., Zhao S.-L., Solutions to ABS lattice equations via generalized Cauchy matrix approach, Stud. Appl. Math. 131 (2013), 72-103, arXiv:1208.3752.
- Zhang D.-J., Zhao S.-L., Nijhoff F.W., Direct linearization of extended lattice BSQ systems, Stud. Appl. Math. 129 (2012), 220-248, arXiv:1112.0525.
- Zhao S.-L., Zhang D.-J., Rational solutions to ${\rm Q}3_{\delta}$ in the Adler-Bobenko-Suris list and degenerations, J. Nonlinear Math. Phys. 26 (2019), 107-132.
|
|