Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 18 (2022), 099, 18 pages      arXiv:2204.10363      https://doi.org/10.3842/SIGMA.2022.099

The Linear Span of Uniform Matrix Product States

Claudia De Lazzari a, Harshit J. Motwani b and Tim Seynnaeve c
a) Dipartimento di Matematica, Università di Trento, Via Sommarive 14, 38123 Povo (TN), Italy
b) Department of Mathematics: Algebra and Geometry, Ghent University, 9000 Gent, Belgium
c) Department of Computer Science, KU Leuven, Celestijnenlaan 200A, 3001 Leuven, Belgium

Received June 03, 2022, in final form December 15, 2022; Published online December 21, 2022

Abstract
The variety of uniform matrix product states arises both in algebraic geometry as a natural generalization of the Veronese variety, and in quantum many-body physics as a model for a translation-invariant system of sites placed on a ring. Using methods from linear algebra, representation theory, and invariant theory of matrices, we study the linear span of this variety.

Key words: matrix product states; invariant theory of matrices.

pdf (492 kb)   tex (28 kb)  

References

  1. Affleck I., Kennedy T., Lieb E.H., Tasaki H., Valence bond ground states in isotropic quantum antiferromagnets, in Condensed Matter Physics and Exactly Soluble Models, CMS Conf. Proc., Springer, Berlin, 1988, 253-304.
  2. Bachmayr M., Schneider R., Uschmajew A., Tensor networks and hierarchical tensors for the solution of high-dimensional partial differential equations, Found. Comput. Math. 16 (2016), 1423-1472.
  3. Barthel T., Lu J., Friesecke G., On the closedness and geometry of tensor network state sets, Lett. Math. Phys. 112 (2022), 72, 33 pages, arXiv:2108.00031.
  4. Bernardi A., De Lazzari C., Fulvio G., Dimension of tensor network varieties, Comm. Cont. Math., to appear, arXiv:2101.03148.
  5. Buczyńska W., Buczyński J., Michałek M., The Hackbusch conjecture on tensor formats, J. Math. Pures Appl. 104 (2015), 749-761, arXiv:1501.01120.
  6. Chen J., Cheng S., Xie H., Wang L., Xiang T., Equivalence of restricted Boltzmann machines and tensor network states, Phys. Rev. B 97 (2018), 085104, 16 pages, arXiv:1701.04831.
  7. Christandl M., Gesmundo F., França D.S., Werner A.H., Optimization at the boundary of the tensor network variety, Phys. Rev. B 103 (2021), 195139, 9 pages, arXiv:2006.16963.
  8. Christandl M., Lucia A., Vrana P., Werner A.H., Tensor network representations from the geometry of entangled states, SciPost Phys. 9 (2020), 042, 31 pages, arXiv:1809.08185.
  9. Cichocki A., Lee N., Oseledets I., Phan A.H., Zhao Q., Mandic D.P., Tensor networks for dimensionality reduction and large-scale optimization: Part 1. Low-rank tensor decompositions, Found. Trends Mach. Learn. 9 (2016), 249-429, arXiv:1809.08185.
  10. Critch A., Morton J., Algebraic geometry of matrix product states, SIGMA 10 (2014), 095, 10 pages, arXiv:1210.2812.
  11. Czapliński A., Michałek M., Seynnaeve T., Uniform matrix product states from an algebraic geometer's point of view, Adv. in Appl. Math. 142 (2023), 102417, 25 pages, arXiv:1904.07563.
  12. De Lazzari C., Algebraic, geometric and numerical methods for tensor network varieties, Ph.D. Thesis, University of Trento, 2022.
  13. De Lazzari C., Motwani H.J., Seynnaeve T., The linear span of uniform matrix product states, GitHub repository, 2022, available at https://github.com/harshitmotwani2015/uMPS/.
  14. Dvir Z., Malod G., Perifel S., Yehudayoff A., Separating multilinear branching programs and formulas, in STOC'12 - Proceedings of the 2012 ACM Symposium on Theory of Computing, ACM, New York, 2012, 615-623.
  15. Fannes M., Nachtergaele B., Werner R.F., Finitely correlated states on quantum spin chains, Comm. Math. Phys. 144 (1992), 443-490.
  16. Greene J., Traces of matrix products, Electron. J. Linear Algebra 27 (2014), 716-734.
  17. Hackbusch W., Tensor spaces and numerical tensor calculus, Springer Ser. Comput. Math., Vol. 56, Springer, Cham, 2019.
  18. Hackl L., Guaita T., Shi T., Haegeman J., Demler E., Cirac J.I., Geometry of variational methods: dynamics of closed quantum systems, SciPost Phys. 9 (2020), 048, 100 pages, arXiv:2004.01015.
  19. Haegeman J., Mariën M., Osborne T.J., Verstraete F., Geometry of matrix product states: metric, parallel transport, and curvature, J. Math. Phys. 55 (2014), 021902, 50 pages, arXiv:1210.7710.
  20. Landsberg J.M., Tensors: geometry and applications, Grad. Stud. Math., Vol. 128, Amer. Math. Soc., Providence, RI, 2012.
  21. Landsberg J.M., Qi Y., Ye K., On the geometry of tensor network states, Quantum Inf. Comput. 12 (2012), 346-354, arXiv:1105.4449.
  22. Navascues M., Vertesi T., Bond dimension witnesses and the structure of homogeneous matrix product states, Quantum 2 (2018), 50, 15 pages, arXiv:1509.04507.
  23. Oseledets I.V., Tensor-train decomposition, SIAM J. Sci. Comput. 33 (2011), 2295-2317.
  24. Östlund S., Rommer S., Thermodynamic limit of density matrix renormalization, Phys. Rev. Lett. 75 (1995), 3537-3540, arXiv:cond-mat/9503107.
  25. Perez-Garcia D., Verstraete F., Wolf M.M., Cirac J.I., Matrix product state representations, Quantum Inf. Comput. 7 (2007), 401-430, arXiv:quant-ph/0608197.
  26. Pólya G., Read R.C., Combinatorial enumeration of groups, graphs, and chemical compounds, Springer, New York, 1987.
  27. Procesi C., The invariant theory of $n\times n$ matrices, Adv. Math. 19 (1976), 306-381.
  28. Robeva E., Seigal A., Duality of graphical models and tensor networks, Inf. Inference 8 (2019), 273-288, arXiv:1710.01437.
  29. Sibirskii K.S., Algebraic invariants of a system of matrices, Sib. Math. J. 9 (1968), 115-124.
  30. Stanley R.P., Algebraic combinatorics: walks, trees, tableaux, and more, Undergrad. Texts Math., Springer, New York, 2013.

Previous article  Contents of Volume 18 (2022)