|
SIGMA 18 (2022), 096, 43 pages arXiv:2102.11816
https://doi.org/10.3842/SIGMA.2022.096
Contribution to the Special Issue on Non-Commutative Algebra, Probability and Analysis in Action
On the Signature of a Path in an Operator Algebra
Nicolas Gilliers a and Carlo Bellingeri b
a) Institut de Mathématiques de Toulouse, UMR5219, Université de Toulouse, CNRS, UPS, F-31062 Toulouse, France
b) Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
Received January 11, 2022, in final form November 30, 2022; Published online December 09, 2022
Abstract
We introduce a class of operators associated with the signature of a smooth path $X$ with values in a $C^{\star}$ algebra $\mathcal{A}$. These operators serve as the basis of Taylor expansions of solutions to controlled differential equations of interest in noncommutative probability. They are defined by fully contracting iterated integrals of $X$, seen as tensors, with the product of $\mathcal{A}$. Were it considered that partial contractions should be included, we explain how these operators yield a trajectory on a group of representations of a combinatorial Hopf monoid. To clarify the role of partial contractions, we build an alternative group-valued trajectory whose increments embody full-contractions operators alone. We obtain therefore a notion of signature, which seems more appropriate for noncommutative probability.
Key words: signature; noncommutative probability; operads; duoidal categories.
pdf (2614 kb)
tex (3579 kb)
References
- Aguiar M., Mahajan S., Monoidal functors, species and Hopf algebras, CRM Monogr. Ser., Vol. 29, Amer. Math. Soc., Providence, RI, 2010.
- Aguiar M., Sottile F., Structure of the Loday-Ronco Hopf algebra of trees, J. Algebra 295 (2006), 473-511, arXiv:math.CO/0409022.
- Biane P., Speicher R., Free diffusions, free entropy and free Fisher information, Ann. Inst. H. Poincaré Probab. Statist. 37 (2001), 581-606.
- Björner A., Wachs M.L., Shellable nonpure complexes and posets. II, Trans. Amer. Math. Soc. 349 (1997), 3945-3975.
- Bultel J.-P., Giraudo S., Combinatorial Hopf algebras from PROs, J. Algebraic Combin. 44 (2016), 455-493, arXiv:1406.6903.
- Capitaine M., Donati-Martin C., The Lévy area process for the free Brownian motion, J. Funct. Anal. 179 (2001), 153-169.
- Chen K.-T., Iterated integrals and exponential homomorphisms, Proc. London Math. Soc. 4 (1954), 502-512.
- Deya A., Schott R., On the rough-paths approach to non-commutative stochastic calculus, J. Funct. Anal. 265 (2013), 594-628, arXiv:1301.6238.
- Forcey S., Lauve A., Sottile F., Hopf structures on the multiplihedra, SIAM J. Discrete Math. 24 (2010), 1250-1271, arXiv:0911.2057.
- Friz P.K., Hairer M., A course on rough paths, Universitext, Springer, Cham, 2020.
- Gelfand I.M., Krob D., Lascoux A., Leclerc B., Retakh V.S., Thibon J.-Y., Noncommutative symmetric functions, Adv. Math. 112 (1995), 218-348, arXiv:hep-th/9407124.
- Ledoux M., Lyons T., Qian Z., Lévy area of Wiener processes in Banach spaces, Ann. Probab. 30 (2002), 546-578.
- Loday J.-L., Ronco M.O., Hopf algebra of the planar binary trees, Adv. Math. 139 (1998), 293-309.
- Loday J.-L., Vallette B., Algebraic operads, Grundlehren Math. Wiss., Vol. 346, Springer, Heidelberg, 2012.
- Lyons T.J., Differential equations driven by rough signals, Rev. Mat. Iberoamericana 14 (1998), 215-310.
- Lyons T.J., Victoir N., An extension theorem to rough paths, Ann. Inst. H. Poincaré C Anal. Non Linéaire 24 (2007), 835-847.
- Malvenuto C., Reutenauer C., Duality between quasi-symmetric functions and the Solomon descent algebra, J. Algebra 177 (1995), 967-982.
- Patras F., Schocker M., Trees, set compositions and the twisted descent algebra, J. Algebraic Combin. 28 (2008), 3-23, arXiv:math.CO/0512227.
- Ryan R.A., Introduction to tensor products of Banach spaces, Springer Monogr. Math., Springer, London, 2002.
- Stanley R.P., Enumerative combinatorics, Vol. 2, Cambridge Stud. Adv. Math., Vol. 62, Cambridge University Press, Cambridge, 1999.
- Vallette B., A Koszul duality for PROPs, Trans. Amer. Math. Soc. 359 (2007), 4865-4943, arXiv:math.AT/0411542.
- Victoir N., Levy area for the free Brownian motion: existence and non-existence, J. Funct. Anal. 208 (2004), 107-121.
- Young L.C., An inequality of the Hölder type, connected with Stieltjes integration, Acta Math. 67 (1936), 251-282.
|
|