|
SIGMA 18 (2022), 094, 19 pages arXiv:2201.09576
https://doi.org/10.3842/SIGMA.2022.094
Equivalent Integrable Metrics on the Sphere with Quartic Invariants
Andrey V. Tsiganov
St. Petersburg State University, St. Petersburg, Russia
Received March 31, 2022, in final form December 04, 2022; Published online December 06, 2022
Abstract
We discuss canonical transformations relating well-known geodesic flows on the cotangent bundle of the sphere with a set of geodesic flows with quartic invariants. By adding various potentials to the corresponding geodesic Hamiltonians, we can construct new integrable systems on the sphere with quartic invariants.
Key words: integrable metrics; canonical transformations; two-dimensional sphere.
pdf (378 kb)
tex (21 kb)
References
- Arnold V.I., Mathematical methods of classical mechanics, 2nd ed., Grad. Texts in Math., Vol. 60, Springer, New York, 1989.
- Bialy M., Mironov A., New semi-Hamiltonian hierarchy related to integrable magnetic flows on surfaces, Cent. Eur. J. Math. 10 (2012), 1596-1604, arXiv:1112.1232.
- Bishop R.L., Goldberg S.I., Tensor analysis on manifolds, Dover Publications, Inc., New York, 1980.
- Błaszak M., Marciniak K., On reciprocal equivalence of Stäckel systems, Stud. Appl. Math. 129 (2012), 26-50, arXiv:1201.0446.
- Bolsinov A.V., Fomenko A.T., Integrable geodesic flows on two-dimensional surfaces, Monogr. Contemp. Math., Consultants Bureau, New York, 2000.
- Bolsinov A.V., Kozlov V.V., Fomenko A.T., The Maupertuis principle and geodesic flow on the sphere arising from integrable cases in the dynamic of a rigid body, Russian Math. Surv. 50 (1995), 473-501.
- D'Ambra G., Gromov M., Lectures on transformation groups: geometry and dynamics, in Surveys in Differential Geometry (Cambridge, MA, 1990), Lehigh University, Bethlehem, PA, 1991, 19-111.
- Dorizzi B., Grammaticos B., Ramani A., Winternitz P., Integrable Hamiltonian systems with velocity-dependent potentials, J. Math. Phys. 26 (1985), 3070-3079.
- Kiyohara K., Topalov P., On Liouville integrability of $h$-projectively equivalent Kähler metrics, Proc. Amer. Math. Soc. 139 (2011), 231-242.
- Matveev V.S., Quantum integrability for the Beltrami-Laplace operators of projectively equivalent metrics of arbitrary signatures, Chebyshevskii Sb. 21 (2020), 275-289, arXiv:1906.06757.
- McSween E., Winternitz P., Integrable and superintegrable Hamiltonian systems in magnetic fields, J. Math. Phys. 41 (2000), 2957-2967.
- Taber W., Projectively equivalent metrics subject to constraints, Trans. Amer. Math. Soc. 282 (1984), 711-737.
- Tsiganov A.V., Duality between integrable Stäckel systems, J. Phys. A 32 (1999), 7965-7982, arXiv:solv-int/9812001.
- Tsiganov A.V., The Maupertuis principle and canonical transformations of the extended phase space, J. Nonlinear Math. Phys. 8 (2001), 157-182, arXiv:nlin.SI/0101061.
- Tsiganov A.V., On natural Poisson bivectors on the sphere, J. Phys. A 44 (2011), 105203, 21 pages, arXiv:1010.3492.
- Tsiganov A.V., On auto and hetero Bäcklund transformations for the Hénon-Heiles systems, Phys. Lett. A 379 (2015), 2903-2907, arXiv:1501.06695.
- Tsiganov A.V., On the Chaplygin system on the sphere with velocity dependent potential, J. Geom. Phys. 92 (2015), 94-99.
- Tsiganov A.V., Simultaneous separation for the Neumann and Chaplygin systems, Regul. Chaotic Dyn. 20 (2015), 74-93.
- Tsiganov A.V., Bäcklund transformations for the Jacobi system on an ellipsoid, Theoret. and Math. Phys. 192 (2017), 1350-1364.
- Tsiganov A.V., Bäcklund transformations for the nonholonomic Veselova system, Regul. Chaotic Dyn. 22 (2017), 163-179, arXiv:1703.04251.
- Tsiganov A.V., Integrable discretization and deformation of the nonholonomic Chaplygin ball, Regul. Chaotic Dyn. 22 (2017), 353-367, arXiv:1705.01866.
- Tsiganov A.V., New bi-Hamiltonian systems on the plane, J. Math. Phys. 58 (2017), 062901, 14 pages, arXiv:1701.05716.
- Tsiganov A.V., On discretization of the Euler top, Regul. Chaotic Dyn. 23 (2018), 785-796, arXiv:1803.06511.
- Tsiganov A.V., On exact discretization of cubic-quintic Duffing oscillator, J. Math. Phys. 59 (2018), 072703, 15 pages, arXiv:1805.05693.
- Tsyganov A.V., Discretization of Hamiltonian systems and intersection theory, Theoret. and Math. Phys. 197 (2018), 1806-1822.
- Vershilov A.V., Tsiganov A.V., On bi-Hamiltonian geometry of some integrable systems on the sphere with cubic integral of motion, J. Phys. A 42 (2009), 105203, 12 pages, arXiv:0812.0217.
- Vinogradov A.M., Kupershmidt B.A., The structure of Hamiltonian mechanics, Russian Math. Surveys 32 (1977), no. 4, 177-243.
|
|