|
SIGMA 18 (2022), 093, 23 pages arXiv:2207.12946
https://doi.org/10.3842/SIGMA.2022.093
Topology of Almost Complex Structures on Six-Manifolds
Gustavo Granja a and Aleksandar Milivojević b
a) Center for Mathematical Analysis, Geometry and Dynamical Systems, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
b) Max Planck Institute for Mathematics, Vivatsgasse 7, 53111 Bonn, Germany
Received August 08, 2022, in final form November 20, 2022; Published online December 02, 2022
Abstract
We study the space of (orthogonal) almost complex structures on closed six-dimensional manifolds as the space of sections of the twistor space for a given metric. For a connected six-manifold with vanishing first Betti number, we express the space of almost complex structures as a quotient of the space of sections of a seven-sphere bundle over the manifold by a circle action, and then use this description to compute the rational homotopy theoretic minimal model of the components that satisfy a certain Chern number condition. We further obtain a formula for the homological intersection number of two sections of the twistor space in terms of the Chern classes of the corresponding almost complex structures.
Key words: almost complex structure; twistor space; space of almost complex structures.
pdf (538 kb)
tex (31 kb)
References
- Armstrong J., On four-dimensional almost Kähler manifolds, Quart. J. Math. Oxford Ser. (2) 48 (1997), 405-415.
- Atiyah M.F., Hitchin N.J., Singer I.M., Self-duality in four-dimensional Riemannian geometry, Proc. Roy. Soc. London Ser. A 362 (1978), 425-461.
- Blanchard A., Recherche de structures analytiques complexes sur certaines variétés, C. R. Acad. Sci. Paris 236 (1953), 657-659.
- Borel A., Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts, Ann. of Math. 57 (1953), 115-207.
- Bredon G.E., Topology and geometry, Grad. Texts in Math., Vol. 139, Springer, New York, 1993.
- Calabi E., Gluck H., What are the best almost-complex structures on the $6$-sphere?, in Differential Geometry: Geometry in Mathematical Physics and Related Topics (Los Angeles, CA, 1990), Proc. Sympos. Pure Math., Vol. 54, Amer. Math. Soc., Providence, RI, 1993, 99-106.
- Crabb M.C., Sutherland W.A., Function spaces and Hurwitz-Radon numbers, Math. Scand. 55 (1984), 67-90.
- Demailly J.-P., Complex analytic and differential geometry, available at https://www-fourier.ujf-grenoble.fr/ demailly/manuscripts/agbook.pdf.
- Duan H., The characteristic classes and Weyl invariants of spinor groups, arXiv:1810.03799.
- Eastwood M.G., Singer M.A., The Fröhlicher spectral sequence on a twistor space, J. Differential Geom. 38 (1993), 653-669.
- Eells J., Salamon S., Twistorial construction of harmonic maps of surfaces into four-manifolds, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 12 (1985), 589-640.
- Evans J.D., Quantum cohomology of twistor spaces and their Lagrangian submanifolds, J. Differential Geom. 96 (2014), 353-397, arXiv:1106.3959.
- Ferlengez B., Granja G., Milivojevic A., On the topology of the space of almost complex structures on the six sphere, New York J. Math. 27 (2021), 1258-1273, arXiv:2108.00750.
- Godinho L., Sabatini S., New tools for classifying Hamiltonian circle actions with isolated fixed points, Found. Comput. Math. 14 (2014), 791-860, arXiv:1206.3195.
- Haefliger A., Rational homotopy of the space of sections of a nilpotent bundle, Trans. Amer. Math. Soc. 273 (1982), 609-620.
- Hitchin N.J., Kählerian twistor spaces, Proc. London Math. Soc. 43 (1981), 133-150.
- Lawson H.B., Michelsohn M.-L., Spin geometry, Princeton Math. Ser., Vol. 38, Princeton University Press, Princeton, NJ, 1989.
- LeBrun C., Orthogonal complex structures on $S^6$, Proc. Amer. Math. Soc. 101 (1987), 136-138.
- LeBrun C., Topology versus Chern numbers for complex $3$-folds, Pacific J. Math. 191 (1999), 123-131, arXiv:math.AG/9801133.
- Mimura M., Toda H., Topology of Lie groups. I, II, Transl. Math. Monogr., Vol. 91, Amer. Math. Soc., Providence, RI, 1991.
- Møller J.M., Nilpotent spaces of sections, Trans. Amer. Math. Soc. 303 (1987), 733-741.
- Møller J.M., Raussen M., Rational homotopy of spaces of maps into spheres and complex projective spaces, Trans. Amer. Math. Soc. 292 (1985), 721-732.
- Salamon S., Harmonic and holomorphic maps, in Geometry Seminar ''Luigi Bianchi'' II - 1984, Lecture Notes in Math., Vol. 1164, Springer, Berlin, 1985, 161-224.
- Salamon S.M., Orthogonal complex structures, in Differential Geometry and Applications (Brno, 1995), Masaryk University, Brno, 1996, 103-117.
- Sullivan D., Infinitesimal computations in topology, Inst. Hautes Études Sci. Publ. Math. 47 (1977), 269-331.
- Taubes C.H., The existence of anti-self-dual conformal structures, J. Differential Geom. 36 (1992), 163-253.
- Vigué-Poirrier M., Sullivan D., The homology theory of the closed geodesic problem, J. Differential Geometry 11 (1976), 633-644.
|
|