|
SIGMA 18 (2022), 089, 30 pages arXiv:2107.14785
https://doi.org/10.3842/SIGMA.2022.089
Rooted Clusters for Graph LP Algebras
Esther Banaian a, Sunita Chepuri b, Elizabeth Kelley c and Sylvester W. Zhang d
a) Department of Mathematics, Aarhus University, 8000 Aarhus, Denmark
b) Department of Mathematics, Lafayette College, Easton, PA 18042, USA
c) Department of Mathematics, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
d) School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA
Received October 13, 2021, in final form November 17, 2022; Published online November 24, 2022
Abstract
LP algebras, introduced by Lam and Pylyavskyy, are a generalization of cluster algebras. These algebras are known to have the Laurent phenomenon, but positivity remains conjectural. Graph LP algebras are finite LP algebras encoded by a graph. For the graph LP algebra defined by a tree, we define a family of clusters called rooted clusters. We prove positivity for these clusters by giving explicit formulas for each cluster variable. We also give a combinatorial interpretation for these expansions using a generalization of $T$-paths.
Key words: Laurent phenomenon algebra; cluster algebra; graph LP algebra; $T$-path.
pdf (551 kb)
tex (53 kb)
References
- Bazier-Matte V., Chapelier-Laget N., Douville G., Mousavand K., Thomas H., Yildrm E., ABHY Associahedra and Newton polytopes of ${F}$-polynomials for finite type cluster algebras, arXiv:1808.09986.
- Bridgeland T., Scattering diagrams, Hall algebras and stability conditions, Algebr. Geom. 4 (2017), 523-561, arXiv:1603.00416.
- Buan A.B., Marsh R., Reineke M., Reiten I., Todorov G., Tilting theory and cluster combinatorics, Adv. Math. 204 (2006), 572-618, arXiv:math.RT/0402054.
- Chapoton F., Enumerative properties of generalized associahedra, Sém. Lothar. Combin. 51 (2004), Art. B51b, 16 pages, arXiv:math.CO/0401237.
- Chapoton F., Fomin S., Zelevinsky A., Polytopal realizations of generalized associahedra, Canad. Math. Bull. 45 (2002), 537-566, arXiv:math.CO/0202004.
- Fock V.V., Goncharov A.B., Cluster ensembles, quantization and the dilogarithm, Ann. Sci. Éc. Norm. Supér. 42 (2009), 865-930, arXiv:math.AG/0311245.
- Fock V.V., Goncharov A.B., Cluster ensembles, quantization and the dilogarithm. II. The intertwiner, in Algebra, Arithmetic, and Geometry: in Honor of Yu.I. Manin, Vol. I, Progr. Math., Vol. 269, Birkhäuser Boston, Boston, MA, 2009, 655-673, arXiv:math.QA/0702398.
- Fomin S., Thurston D., Cluster algebras and triangulated surfaces, Part II: Lambda lengths, Mem. Amer. Math. Soc. 255 (2018), v+97 pages, arXiv:1210.5569.
- Fomin S., Zelevinsky A., Cluster algebras. I. Foundations, J. Amer. Math. Soc. 15 (2002), 497-529, arXiv:1210.5569.
- Fordy A.P., Hone A., Discrete integrable systems and Poisson algebras from cluster maps, Comm. Math. Phys. 325 (2014), 527-584, arXiv:1207.6072.
- Franco S., Bipartite field theories: from D-brane probes to scattering amplitudes, J. High Energy Phys. 2012 (2012), 141 pages, 49 pages, arXiv:1207.0807.
- Gekhtman M., Shapiro M., Vainshtein A., Cluster algebras and Weil-Petersson forms, Duke Math. J. 127 (2005), 291-311, correction, Duke Math. J. 139 (2007), 407-409, arXiv:math.QA/0309138.
- Gekhtman M., Shapiro M., Vainshtein A., Cluster algebras and Poisson geometry, Math. Surveys Monogr., Vol. 167, Amer. Math. Soc., Providence, RI, 2010.
- Gross M., Hacking P., Keel S., Birational geometry of cluster algebras, Algebr. Geom. 2 (2015), 137-175, arXiv:1309.2573.
- Gunawan E., Musiker G., $T$-path formula and atomic bases for cluster algebras of type $D$, SIGMA 11 (2015), 060, 46 pages, arXiv:1409.3610.
- Ingalls C., Thomas H., Noncrossing partitions and representations of quivers, Compos. Math. 145 (2009), 1533-1562, arXiv:math.RT/0612219.
- Keller B., Cluster algebras, quiver representations and triangulated categories, in Triangulated Categories, London Math. Soc. Lecture Note Ser., Vol. 375, Cambridge University Press, Cambridge, 2010, 76-160, arXiv:0807.1960.
- Keller B., The periodicity conjecture for pairs of Dynkin diagrams, Ann. of Math. 177 (2013), 111-170, arXiv:1001.1531.
- Lam T., Pylyavskyy P., Laurent phenomenon algebras, Camb. J. Math. 4 (2016), 121-162, arXiv:1206.2611.
- Lam T., Pylyavskyy P., Linear Laurent phenomenon algebras, Int. Math. Res. Not. 2016 (2016), 3163-3203, arXiv:1206.2612.
- Musiker G., Ovenhouse N., Zhang S.W., An expansion formula for decorated super-Teichmüller spaces, SIGMA 17 (2021), 080, 34 pages, arXiv:2102.09143.
- Musiker G., Schiffler R., Cluster expansion formulas and perfect matchings, J. Algebraic Combin. 32 (2010), 187-209, arXiv:0810.3638.
- Musiker G., Schiffler R., Williams L., Positivity for cluster algebras from surfaces, Adv. Math. 227 (2011), 2241-2308, arXiv:0906.0748.
- Reiten I., Tilting theory and quasitilted algebras, Doc. Math. 3 (1998), Extra Vol. II, 109-120, arXiv:1012.6014.
- Schiffler R., A cluster expansion formula ($A_n$ case), Electron. J. Combin. 15 (2008), 64, 9 pages, arXiv:math.RT/0611956.
- Schiffler R., On cluster algebras arising from unpunctured surfaces. II, Adv. Math. 223 (2010), 1885-1923, arXiv:0809.2593.
- Schiffler R., Thomas H., On cluster algebras arising from unpunctured surfaces, Int. Math. Res. Not. 2009 (2009), 3160-3189, arXiv:0712.4131.
|
|