Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 18 (2022), 086, 21 pages      arXiv:2202.11153      https://doi.org/10.3842/SIGMA.2022.086

The Weighted Ambient Metric

Jeffrey Case and Ayush Khaitan
Department of Mathematics, Penn State University, PA, USA

Received March 01, 2022, in final form October 25, 2022; Published online November 02, 2022

Abstract
We prove the existence and uniqueness of weighted ambient metrics and weighted Poincaré metrics for smooth metric measure spaces.

Key words: ambient metric; Poincaré metric; smooth metric measure space.

pdf (483 kb)   tex (26 kb)  

References

  1. Bailey T.N., Eastwood M.G., Graham C.R., Invariant theory for conformal and CR geometry, Ann. of Math. 139 (1994), 491-552.
  2. Bakry D., Émery M., Diffusions hypercontractives, in Séminaire de probabilités, XIX, 1983/84, Lecture Notes in Math., Vol. 1123, Springer, Berlin, 1985, 177-206.
  3. Caffarelli L., Silvestre L., An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations 32 (2007), 1245-1260, arXiv:math.AP/0608640.
  4. Case J.S., Smooth metric measure spaces, quasi-Einstein metrics, and tractors, Cent. Eur. J. Math. 10 (2012), 1733-1762, arXiv:1110.3009.
  5. Case J.S., A Yamabe-type problem on smooth metric measure spaces, J. Differential Geom. 101 (2015), 467-505, arXiv:1306.4358.
  6. Case J.S., A notion of the weighted $\sigma_k$-curvature for manifolds with density, Adv. Math. 295 (2016), 150-194, arXiv:1409.4455.
  7. Case J.S., A weighted renormalized curvature for manifolds with density, Proc. Amer. Math. Soc. 145 (2017), 4031-4040, arXiv:1603.02989.
  8. Case J.S., The weighted $\sigma_k$-curvature of a smooth metric measure space, Pacific J. Math. 299 (2019), 339-399, arXiv:1608.01663.
  9. Case J.S., Sharp weighted Sobolev trace inequalities and fractional powers of the Laplacian, J. Funct. Anal. 279 (2020), 108567, 33 pages, arXiv:1901.09843.
  10. Case J.S., Chang S.-Y.A., On fractional GJMS operators, Comm. Pure Appl. Math. 69 (2016), 1017-1061, arXiv:1406.1846.
  11. Case J.S., Shu Y.-J., Wei G., Rigidity of quasi-Einstein metrics, Differential Geom. Appl. 29 (2011), 93-100, arXiv:0805.3132.
  12. Chang S.-Y.A., Fang H., A class of variational functionals in conformal geometry, Int. Math. Res. Not. 2008 (2008), Art ID rnn008, 16 pages, arXiv:0803.0333.
  13. Chang S.-Y.A., Fang H., Graham C.R., A note on renormalized volume functionals, Differential Geom. Appl. 33 (2014), suppl., 246-258, arXiv:1211.6422.
  14. Cheeger J., Colding T.H., On the structure of spaces with Ricci curvature bounded below. II, J. Differential Geom. 54 (2000), 13-35, arXiv:1805.07988.
  15. Fefferman C., Graham C.R., The ambient metric, Ann. of Math. Stud., Vol. 178, Princeton University Press, Princeton, NJ, 2012.
  16. Gover A.R., Invariant theory and calculus for conformal geometries, Adv. Math. 163 (2001), 206-257.
  17. Gover A.R., Leitner F., A sub-product construction of Poincaré-Einstein metrics, Internat. J. Math. 20 (2009), 1263-1287, arXiv:math.DG/0608044.
  18. Graham C.R., Extended obstruction tensors and renormalized volume coefficients, Adv. Math. 220 (2009), 1956-1985, arXiv:0810.4203.
  19. Graham C.R., Jenne R., Mason L.J., Sparling G.A.J., Conformally invariant powers of the Laplacian. I. Existence, J. London Math. Soc. 46 (1992), 557-565.
  20. Graham C.R., Zworski M., Scattering matrix in conformal geometry, Invent. Math. 152 (2003), 89-118, arXiv:math.DG/0109089.
  21. Khaitan A., GJMS operators on smooth metric measure spaces, arXiv:2203.04719.
  22. Mazzeo R.R., Melrose R.B., Meromorphic extension of the resolvent on complete spaces with asymptotically constant negative curvature, J. Funct. Anal. 75 (1987), 260-310.
  23. Perelman G., The entropy formula for the Ricci flow and its geometric applications, arXiv:math.DG/0211159.
  24. Wei G., Wylie W., Comparison geometry for the Bakry-Emery Ricci tensor, J. Differential Geom. 83 (2009), 377-405, arXiv:0706.1120.
  25. Yamabe H., On a deformation of Riemannian structures on compact manifolds, Osaka Math. J. 12 (1960), 21-37.

Previous article  Next article  Contents of Volume 18 (2022)