|
SIGMA 18 (2022), 086, 21 pages arXiv:2202.11153
https://doi.org/10.3842/SIGMA.2022.086
The Weighted Ambient Metric
Jeffrey Case and Ayush Khaitan
Department of Mathematics, Penn State University, PA, USA
Received March 01, 2022, in final form October 25, 2022; Published online November 02, 2022
Abstract
We prove the existence and uniqueness of weighted ambient metrics and weighted Poincaré metrics for smooth metric measure spaces.
Key words: ambient metric; Poincaré metric; smooth metric measure space.
pdf (483 kb)
tex (26 kb)
References
- Bailey T.N., Eastwood M.G., Graham C.R., Invariant theory for conformal and CR geometry, Ann. of Math. 139 (1994), 491-552.
- Bakry D., Émery M., Diffusions hypercontractives, in Séminaire de probabilités, XIX, 1983/84, Lecture Notes in Math., Vol. 1123, Springer, Berlin, 1985, 177-206.
- Caffarelli L., Silvestre L., An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations 32 (2007), 1245-1260, arXiv:math.AP/0608640.
- Case J.S., Smooth metric measure spaces, quasi-Einstein metrics, and tractors, Cent. Eur. J. Math. 10 (2012), 1733-1762, arXiv:1110.3009.
- Case J.S., A Yamabe-type problem on smooth metric measure spaces, J. Differential Geom. 101 (2015), 467-505, arXiv:1306.4358.
- Case J.S., A notion of the weighted $\sigma_k$-curvature for manifolds with density, Adv. Math. 295 (2016), 150-194, arXiv:1409.4455.
- Case J.S., A weighted renormalized curvature for manifolds with density, Proc. Amer. Math. Soc. 145 (2017), 4031-4040, arXiv:1603.02989.
- Case J.S., The weighted $\sigma_k$-curvature of a smooth metric measure space, Pacific J. Math. 299 (2019), 339-399, arXiv:1608.01663.
- Case J.S., Sharp weighted Sobolev trace inequalities and fractional powers of the Laplacian, J. Funct. Anal. 279 (2020), 108567, 33 pages, arXiv:1901.09843.
- Case J.S., Chang S.-Y.A., On fractional GJMS operators, Comm. Pure Appl. Math. 69 (2016), 1017-1061, arXiv:1406.1846.
- Case J.S., Shu Y.-J., Wei G., Rigidity of quasi-Einstein metrics, Differential Geom. Appl. 29 (2011), 93-100, arXiv:0805.3132.
- Chang S.-Y.A., Fang H., A class of variational functionals in conformal geometry, Int. Math. Res. Not. 2008 (2008), Art ID rnn008, 16 pages, arXiv:0803.0333.
- Chang S.-Y.A., Fang H., Graham C.R., A note on renormalized volume functionals, Differential Geom. Appl. 33 (2014), suppl., 246-258, arXiv:1211.6422.
- Cheeger J., Colding T.H., On the structure of spaces with Ricci curvature bounded below. II, J. Differential Geom. 54 (2000), 13-35, arXiv:1805.07988.
- Fefferman C., Graham C.R., The ambient metric, Ann. of Math. Stud., Vol. 178, Princeton University Press, Princeton, NJ, 2012.
- Gover A.R., Invariant theory and calculus for conformal geometries, Adv. Math. 163 (2001), 206-257.
- Gover A.R., Leitner F., A sub-product construction of Poincaré-Einstein metrics, Internat. J. Math. 20 (2009), 1263-1287, arXiv:math.DG/0608044.
- Graham C.R., Extended obstruction tensors and renormalized volume coefficients, Adv. Math. 220 (2009), 1956-1985, arXiv:0810.4203.
- Graham C.R., Jenne R., Mason L.J., Sparling G.A.J., Conformally invariant powers of the Laplacian. I. Existence, J. London Math. Soc. 46 (1992), 557-565.
- Graham C.R., Zworski M., Scattering matrix in conformal geometry, Invent. Math. 152 (2003), 89-118, arXiv:math.DG/0109089.
- Khaitan A., GJMS operators on smooth metric measure spaces, arXiv:2203.04719.
- Mazzeo R.R., Melrose R.B., Meromorphic extension of the resolvent on complete spaces with asymptotically constant negative curvature, J. Funct. Anal. 75 (1987), 260-310.
- Perelman G., The entropy formula for the Ricci flow and its geometric applications, arXiv:math.DG/0211159.
- Wei G., Wylie W., Comparison geometry for the Bakry-Emery Ricci tensor, J. Differential Geom. 83 (2009), 377-405, arXiv:0706.1120.
- Yamabe H., On a deformation of Riemannian structures on compact manifolds, Osaka Math. J. 12 (1960), 21-37.
|
|