|
SIGMA 18 (2022), 080, 21 pages arXiv:2102.09175
https://doi.org/10.3842/SIGMA.2022.080
Connection Problem for an Extension of $q$-Hypergeometric Systems
Takahiko Nobukawa
Department of Mathematics, Kobe University, Rokko, Kobe 657-8501, Japan
Received March 19, 2021, in final form October 14, 2022; Published online October 21, 2022
Abstract
We give an example of solutions of the connection problem associated with a certain system of linear $q$-difference equations recently introduced by Park. The result contains a connection formulas of the $q$-Lauricella hypergeometric function $\varphi_{D}$ and those of the $q$-generalized hypergeometric function ${}_{N+1}\varphi_{N}$ as special cases.
Key words: $q$-difference equations; $q$-hypergeometric series; connection matrices; Yang-Baxter equation.
pdf (472 kb)
tex (22 kb)
References
- Andrews G.E., Summations and transformations for basic Appell series, J. London Math. Soc. 4 (1972), 618-622.
- Aomoto K., A note on holonomic $q$-difference systems, in Algebraic Analysis, Vol. I, Academic Press, Boston, MA, 1988, 25-28.
- Aomoto K., A normal form of a holonomic $q$-difference system and its application to $BC_1$ type, Int. J. Pure Appl. Math. 50 (2009), 85-95.
- Aomoto K., Kato Y., Mimachi K., A solution of the Yang-Baxter equation as connection coefficients of a holonomic $q$-difference system, Int. Math. Res. Not. 1992 (1992), 7-15.
- Appell P., Sur les séries hypergéométriques de deux variables et sur des équations différentielles linéaires simultanees aux dérivées partielles, C. R. Acad. Soi. Paris 90 (1880), 296-298.
- Erdélyi A., Hypergeometric functions of two variables, Acta Math. 83 (1950), 131-164.
- Gasper G., Rahman M., Basic hypergeometric series, 2nd ed., Encyclopedia of Mathematics and its Applications, Vol. 96, Cambridge University Press, Cambridge, 2004.
- Gelfand I.M., Graev M.I., GG functions and their relations to general hypergeometric functions, Lett. Math. Phys. 50 (1999), 1-27.
- Gelfand I.M., Zelevinsky A.V., Kapranov M.M., Hypergeometric functions and toric varieties, Funct. Anal. Appl. 23 (1989), 94-106.
- Hahn W., Beiträge zur Theorie der Heineschen Reihen. Die $24$ Integrale der Hypergeometrischen $q$-Differenzengleichung. Das $q$-Analogon der Laplace-Transformation, Math. Nachr. 2 (1949), 340-379.
- Jimbo M., Quantum groups and the Yang-Baxter equation (in Japanese), Maruzen shuppan, 1990.
- Jimbo M., Miwa T., Okado M., Solvable lattice models related to the vector representation of classical simple Lie algebras, Comm. Math. Phys. 116 (1988), 507-525.
- Konno H., Elliptic weight functions and elliptic $q$-KZ equation, J. Integrable Syst. 2 (2017), xyx011, 43 pages, arXiv:1706.07630.
- Le Vavasseur R., Sur le système d'équations aux dérivées partielles simultanées auxquelles satisfait la série hypergéométrique à deux variables $F_1(\alpha, \beta, \beta',\gamma; x,y)$, Ann. Fac. Sci. Toulouse Sci. Math. Sci. Phys. 7 (1893), 121-205.
- Matsubara-Heo S.-J., Global analysis of GG systems, Int. Math. Res. Not. 2022 (2022), 14923-14963, arXiv:2010.03398.
- Mimachi K., Connection problem in holonomic $q$-difference system associated with a Jackson integral of Jordan-Pochhammer type, Nagoya Math. J. 116 (1989), 149-161.
- Mimachi K., Connection formulas related with Appell's $F_{1}$ and Lauricella's $F_{D}$ functions,in Proceedings of the Symposium on Representation Theory, J-STAGE, Japan, 2018, 142-159.
- Olsson P.O.M., Integration of the partial differential equations for the hypergeometric functions $F_{1}$ and $F_{D}$ of two and more variables, J. Math. Phys. 5 (1964), 420-430.
- Ormerod C.M., Rains E.M., An elliptic Garnier system, Comm. Math. Phys. 355 (2017), 741-766, arXiv:1607.07831.
- Park K., A certain generalization of $q$-hypergeometric functions and their related monodromy preserving deformation, J. Integrable Syst. 3 (2018), xyy019, 14 pages, arXiv:1804.08921.
- Park K., A certain generalization of $q$-hypergeometric functions and their related monodromy preserving deformation II, arXiv:2005.04992.
- Sakai H., Rational surfaces associated with affine root systems and geometry of the Painlevé equations, Comm. Math. Phys. 220 (2001), 165-229.
- Thomae J., Les séries Heinéennes supérieures, ou les séries de la forme, Ann. Mat. Pura Appl. 4 (1870), 105-138.
- Tsuda T., Hypergeometric solution of a certain polynomial Hamiltonian system of isomonodromy type, Q. J. Math. 63 (2012), 489-505, arXiv:1005.4130.
- Watson G.N., The continuation of functions defined by generalized hypergeometric series, Trans. Camb. Phil. Soc. 21 (1910), 281-299.
- Yamada Y., An elliptic Garnier system from interpolation, SIGMA 13 (2017), 069, 8 pages, arXiv:1706.05155.
|
|