|
SIGMA 18 (2022), 079, 21 pages arXiv:2204.09206
https://doi.org/10.3842/SIGMA.2022.079
Noncolliding Macdonald Walks with an Absorbing Wall
Leonid Petrov
University of Virginia, Charlottesville, VA, USA
Received June 07, 2022, in final form October 16, 2022; Published online October 20, 2022
Abstract
The branching rule is one of the most fundamental properties of the Macdonald symmetric polynomials. It expresses a Macdonald polynomial as a nonnegative linear combination of Macdonald polynomials with smaller number of variables. Taking a limit of the branching rule under the principal specialization when the number of variables goes to infinity, we obtain a Markov chain of $m$ noncolliding particles with negative drift and an absorbing wall at zero. The chain depends on the Macdonald parameters $(q,t)$ and may be viewed as a discrete deformation of the Dyson Brownian motion. The trajectory of the Markov chain is equivalent to a certain Gibbs ensemble of plane partitions with an arbitrary cascade front wall. In the Jack limit $t=q^{\beta/2}\to1$ the absorbing wall disappears, and the Macdonald noncolliding walks turn into the $\beta$-noncolliding random walks studied by Huang [Int. Math. Res. Not. 2021 (2021), 5898-5942, arXiv:1708.07115]. Taking $q=0$ (Hall-Littlewood degeneration) and further sending $t\to 1$, we obtain a continuous time particle system on $\mathbb{Z}_{\ge 0}$ with inhomogeneous jump rates and absorbing wall at zero.
Key words: Macdonald polynomials; branching rule; noncolliding random walks; lozenge tilings.
pdf (577 kb)
tex (177 kb)
References
- Anderson G.W., Guionnet A., Zeitouni O., An introduction to random matrices, Cambridge Stud. Adv. Math., Vol. 118, Cambridge University Press, Cambridge, 2010.
- Borodin A., Schur dynamics of the Schur processes, Adv. Math. 228 (2011), 2268-2291, arXiv:1001.3442.
- Borodin A., Corwin I., Macdonald processes, Probab. Theory Related Fields 158 (2014), 225-400, arXiv:1111.4408.
- Borodin A., Ferrari P.L., Anisotropic growth of random surfaces in $2+1$ dimensions, Comm. Math. Phys. 325 (2014), 603-684, arXiv:0804.3035.
- Borodin A., Gorin V., Markov processes of infinitely many nonintersecting random walks, Probab. Theory Related Fields 155 (2013), 935-997, arXiv:1106.1299.
- Borodin A., Olshanski G., Representations of the infinite symmetric group, Cambridge Studies in Advanced Mathematics, Vol. 160, Cambridge University Press, Cambridge, 2017.
- Boutillier C., Mkrtchyan S., Reshetikhin N., Tingley P., Random skew plane partitions with a piecewise periodic back wall, Ann. Henri Poincaré 13 (2012), 271-296, arXiv:0912.3968.
- Dyson F.J., A Brownian-motion model for the eigenvalues of a random matrix, J. Math. Phys. 3 (1962), 1191-1198.
- ErdHos L., Yau H.-T., Universality of local spectral statistics of random matrices, Bull. Amer. Math. Soc. (N.S.) 49 (2012), 377-414, arXiv:1106.4986.
- Gorin V., Petrov L., Universality of local statistics for noncolliding random walks, Ann. Probab. 47 (2019), 2686-2753, arXiv:1608.03243.
- Gorin V., Shkolnikov M., Limits of multilevel TASEP and similar processes, Ann. Inst. Henri Poincaré Probab. Stat. 51 (2015), 18-27, arXiv:1206.3817.
- Gorin V., Shkolnikov M., Multilevel Dyson Brownian motions via Jack polynomials, Probab. Theory Related Fields 163 (2015), 413-463, arXiv:1401.5595.
- Huang J., $\beta$-nonintersecting Poisson random walks: law of large numbers and central limit theorems, Int. Math. Res. Not. 2021 (2021), 5898-5942, arXiv:1708.07115.
- Johansson K., Universality of the local spacing distribution in certain ensembles of Hermitian Wigner matrices, Comm. Math. Phys. 215 (2001), 683-705, arXiv:math-ph/0006020.
- Kaneko J., $q$-Selberg integrals and Macdonald polynomials, Ann. Sci. 'Ecole Norm. Sup. (4) 29 (1996), 583-637.
- Karlin S., McGregor J., Coincidence probabilities, Pacific J. Math. 9 (1959), 1141-1164.
- Kerov S., Okounkov A., Olshanski G., The boundary of the Young graph with Jack edge multiplicities, Int. Math. Res. Not. 1998 (1998), 173-199, arXiv:q-alg/9703037.
- König W., Orthogonal polynomial ensembles in probability theory, Probab. Surv. 2 (2005), 385-447, arXiv:math.PR/0403090.
- König W., O'Connell N., Roch S., Non-colliding random walks, tandem queues, and discrete orthogonal polynomial ensembles, Electron. J. Probab. 7 (2002), no. 5, 24 pages.
- Macdonald I.G., Symmetric functions and Hall polynomials, 2nd ed., Oxford Math. Monogr., The Clarendon Press, Oxford University Press, New York, 1995.
- Okounkov A., Reshetikhin N., Correlation function of Schur process with application to local geometry of a random 3-dimensional Young diagram, J. Amer. Math. Soc. 16 (2003), 581-603, arXiv:math.CO/0107056.
- Okounkov A., Reshetikhin N., Random skew plane partitions and the Pearcey process, Comm. Math. Phys. 269 (2007), 571-609, arXiv:math.CO/0503508.
- Petrov L., Saenz A., Mapping TASEP back in time, Probab. Theory Related Fields 182 (2022), 481-530, arXiv:1907.09155.
- Stanley R.P., Enumerative combinatorics, Vol. 2, Cambridge Stud. Adv. Math., Vol. 62, Cambridge University Press, Cambridge, 1999.
- Warren J., Dyson's Brownian motions, intertwining and interlacing, Electron. J. Probab. 12 (2007), no. 19, 573-590, arXiv:math.PR/0509720.
|
|