|
SIGMA 18 (2022), 076, 15 pages arXiv:2201.03833
https://doi.org/10.3842/SIGMA.2022.076
Contribution to the Special Issue on Enumerative and Gauge-Theoretic Invariants in honor of Lothar Göttsche on the occasion of his 60th birthday
Universality of Descendent Integrals over Moduli Spaces of Stable Sheaves on $K3$ Surfaces
Georg Oberdieck
Mathematisches Institut, Universität Bonn, Endenicher Allee 60, D-53115 Bonn, Germany
Received January 23, 2022, in final form October 06, 2022; Published online October 13, 2022
Abstract
We interprete results of Markman on monodromy operators as a universality statement for descendent integrals over moduli spaces of stable sheaves on $K3$ surfaces. This yields effective methods to reduce these descendent integrals to integrals over the punctual Hilbert scheme of the $K3$ surface. As an application we establish the higher rank Segre-Verlinde correspondence for $K3$ surfaces as conjectured by Göttsche and Kool.
Key words: moduli spaces of sheaves; $K3$ surfaces; descendent integrals.
pdf (456 kb)
tex (21 kb)
References
- Ellingsrud G., Göttsche L., Lehn M., On the cobordism class of the Hilbert scheme of a surface, J. Algebraic Geom. 10 (2001), 81-100, arXiv:math.AG/9904095.
- Frei S., Moduli spaces of sheaves on $K3$ surfaces and Galois representations, Selecta Math. (N.S.) 26 (2020), paper no. 6, 16 pages, arXiv:1810.06735.
- Göttsche L., Kool M., Virtual Segre and Verlinde numbers of projective surfaces, arXiv:2007.11631.
- Göttsche L., Nakajima H., Yoshioka K., $K$-theoretic Donaldson invariants via instanton counting, Pure Appl. Math. Q. 5 (2009), 1029-1111, arXiv:math.AG/0611945.
- Gritsenko V., Hulek K., Sankaran G.K., Moduli of $K3$ surfaces and irreducible symplectic manifolds, in Handbook of Moduli, Vol. I, Adv. Lect. Math. (ALM), Vol. 24, Int. Press, Somerville, MA, 2013, 459-526, arXiv:1012.4155.
- Huybrechts D., Lectures on $K3$ surfaces, Cambridge Stud. Adv. Math., Vol. 158, Cambridge University Press, Cambridge, 2016.
- Huybrechts D., Lehn M., The geometry of moduli spaces of sheaves, 2nd ed., Cambridge Math. Lib., Cambridge University Press, Cambridge, 2010.
- Lehn M., Chern classes of tautological sheaves on Hilbert schemes of points on surfaces, Invent. Math. 136 (1999), 157-207, arXiv:math.AG/9803091.
- Marian A., Oprea D., Pandharipande R., Segre classes and Hilbert schemes of points, Ann. Sci. Éc. Norm. Supér. 50 (2017), 239-267, arXiv:1507.00688.
- Marian A., Oprea D., Pandharipande R., The combinatorics of Lehn's conjecture, J. Math. Soc. Japan 71 (2019), 299-308, arXiv:1708.08129.
- Marian A., Oprea D., Pandharipande R., Higher rank Segre integrals over the Hilbert scheme of points, J. Eur. Math. Soc. (JEMS) 24 (2022), 2979-3015, arXiv:1712.02382.
- Markman E., Generators of the cohomology ring of moduli spaces of sheaves on symplectic surfaces, J. Reine Angew. Math. 544 (2002), 61-82, arXiv:math.AG/0009109.
- Markman E., On the monodromy of moduli spaces of sheaves on $K3$ surfaces, J. Algebraic Geom. 17 (2008), 29-99, arXiv:math.AG/0305042.
- Voisin C., Segre classes of tautological bundles on Hilbert schemes of surfaces, Algebr. Geom. 6 (2019), 186-195, arXiv:1708.06325.
|
|