Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 18 (2022), 076, 15 pages      arXiv:2201.03833      https://doi.org/10.3842/SIGMA.2022.076
Contribution to the Special Issue on Enumerative and Gauge-Theoretic Invariants in honor of Lothar Göttsche on the occasion of his 60th birthday

Universality of Descendent Integrals over Moduli Spaces of Stable Sheaves on $K3$ Surfaces

Georg Oberdieck
Mathematisches Institut, Universität Bonn, Endenicher Allee 60, D-53115 Bonn, Germany

Received January 23, 2022, in final form October 06, 2022; Published online October 13, 2022

Abstract
We interprete results of Markman on monodromy operators as a universality statement for descendent integrals over moduli spaces of stable sheaves on $K3$ surfaces. This yields effective methods to reduce these descendent integrals to integrals over the punctual Hilbert scheme of the $K3$ surface. As an application we establish the higher rank Segre-Verlinde correspondence for $K3$ surfaces as conjectured by Göttsche and Kool.

Key words: moduli spaces of sheaves; $K3$ surfaces; descendent integrals.

pdf (456 kb)   tex (21 kb)  

References

  1. Ellingsrud G., Göttsche L., Lehn M., On the cobordism class of the Hilbert scheme of a surface, J. Algebraic Geom. 10 (2001), 81-100, arXiv:math.AG/9904095.
  2. Frei S., Moduli spaces of sheaves on $K3$ surfaces and Galois representations, Selecta Math. (N.S.) 26 (2020), paper no. 6, 16 pages, arXiv:1810.06735.
  3. Göttsche L., Kool M., Virtual Segre and Verlinde numbers of projective surfaces, arXiv:2007.11631.
  4. Göttsche L., Nakajima H., Yoshioka K., $K$-theoretic Donaldson invariants via instanton counting, Pure Appl. Math. Q. 5 (2009), 1029-1111, arXiv:math.AG/0611945.
  5. Gritsenko V., Hulek K., Sankaran G.K., Moduli of $K3$ surfaces and irreducible symplectic manifolds, in Handbook of Moduli, Vol. I, Adv. Lect. Math. (ALM), Vol. 24, Int. Press, Somerville, MA, 2013, 459-526, arXiv:1012.4155.
  6. Huybrechts D., Lectures on $K3$ surfaces, Cambridge Stud. Adv. Math., Vol. 158, Cambridge University Press, Cambridge, 2016.
  7. Huybrechts D., Lehn M., The geometry of moduli spaces of sheaves, 2nd ed., Cambridge Math. Lib., Cambridge University Press, Cambridge, 2010.
  8. Lehn M., Chern classes of tautological sheaves on Hilbert schemes of points on surfaces, Invent. Math. 136 (1999), 157-207, arXiv:math.AG/9803091.
  9. Marian A., Oprea D., Pandharipande R., Segre classes and Hilbert schemes of points, Ann. Sci. Éc. Norm. Supér. 50 (2017), 239-267, arXiv:1507.00688.
  10. Marian A., Oprea D., Pandharipande R., The combinatorics of Lehn's conjecture, J. Math. Soc. Japan 71 (2019), 299-308, arXiv:1708.08129.
  11. Marian A., Oprea D., Pandharipande R., Higher rank Segre integrals over the Hilbert scheme of points, J. Eur. Math. Soc. (JEMS) 24 (2022), 2979-3015, arXiv:1712.02382.
  12. Markman E., Generators of the cohomology ring of moduli spaces of sheaves on symplectic surfaces, J. Reine Angew. Math. 544 (2002), 61-82, arXiv:math.AG/0009109.
  13. Markman E., On the monodromy of moduli spaces of sheaves on $K3$ surfaces, J. Algebraic Geom. 17 (2008), 29-99, arXiv:math.AG/0305042.
  14. Voisin C., Segre classes of tautological bundles on Hilbert schemes of surfaces, Algebr. Geom. 6 (2019), 186-195, arXiv:1708.06325.

Previous article  Next article  Contents of Volume 18 (2022)