|
SIGMA 18 (2022), 073, 22 pages arXiv:2111.02179
https://doi.org/10.3842/SIGMA.2022.073
Contribution to the Special Issue on Non-Commutative Algebra, Probability and Analysis in Action
Monotone Cumulant-Moment Formula and Schröder Trees
Octavio Arizmendi a and Adrian Celestino b
a) Centro de Investigación en Matemáticas, Calle Jalisco SN. Guanajuato, Mexico
b) Department of Mathematical Sciences, Norwegian University of Science and Technology, 7491 Trondheim, Norway
Received March 23, 2022, in final form September 25, 2022; Published online October 07, 2022
Abstract
We prove a formula to express multivariate monotone cumulants of random variables in terms of their moments by using a Hopf algebra of decorated Schröder trees.
Key words: noncommutative probability; cumulants; monotone cumulants; moment-cumulant formula; Schröder trees; Hopf algebras.
pdf (503 kb)
tex (30 kb)
References
- Arizmendi O., Hasebe T., Lehner F., Vargas C., Relations between cumulants in noncommutative probability, Adv. Math. 282 (2015), 56-92, arXiv:1408.2977.
- Ben Ghorbal A., Schürmann M., Non-commutative notions of stochastic independence, Math. Proc. Cambridge Philos. Soc. 133 (2002), 531-561.
- Celestino A., Ebrahimi-Fard K., Patras F., Perales D., Cumulant-cumulant relations in free probability theory from Magnus' expansion, Found. Comput. Math. 22 (2022), 733-755, arXiv:2004.10152.
- Celestino A., Patras F., A forest formula for pre-Lie exponentials, Magnus' operator and cumulant-cumulant relations, arXiv:2203.11968.
- Ebrahimi-Fard K., Patras F., Cumulants, free cumulants and half-shuffles, Proc. A. 471 (2015), 20140843, 18 pages, arXiv:1409.5664.
- Ebrahimi-Fard K., Patras F., The splitting process in free probability theory, Int. Math. Res. Not. 2016 (2016), 2647-2676, arXiv:1502.02748.
- Ebrahimi-Fard K., Patras F., Monotone, free, and boolean cumulants: a shuffle algebra approach, Adv. Math. 328 (2018), 112-132, arXiv:1701.06152.
- Ebrahimi-Fard K., Patras F., Shuffle group laws: applications in free probability, Proc. Lond. Math. Soc. 119 (2019), 814-840, arXiv:1704.04942.
- Ebrahimi-Fard K., Patras F., A group-theoretical approach to conditionally free cumulants, in Algebraic Combinatorics, Resurgence, Moulds and Applications (CARMA), Vol. 1, IRMA Lect. Math. Theor. Phys., Vol. 31, EMS Publ. House, Berlin, 2020, 67-92, arXiv:1806.06287.
- Foissy L., Bidendriform bialgebras, trees, and free quasi-symmetric functions, J. Pure Appl. Algebra 209 (2007), 439-459, arXiv:math.RA/0505207.
- Hasebe T., Saigo H., The monotone cumulants, Ann. Inst. Henri Poincaré Probab. Stat. 47 (2011), 1160-1170, arXiv:0907.4896.
- Iserles A., Expansions that grow on trees, Notices Amer. Math. Soc. 49 (2002), 430-440.
- Josuat-Vergès M., Refined enumeration of noncrossing chains and Hook formulas, Ann. Comb. 19 (2015), 443-460, arXiv:1405.5477.
- Josuat-Vergès M., Menous F., Novelli J.C., Thibon J.Y., Free cumulants, Schröder trees, and operads, Adv. in Appl. Math. 88 (2017), 92-119, arXiv:1604.04759.
- Muraki N., The five independences as natural products, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 6 (2003), 337-371.
- Murua A., The Hopf algebra of rooted trees, free Lie algebras, and Lie series, Found. Comput. Math. 6 (2006), 387-426.
- Speicher R., Multiplicative functions on the lattice of noncrossing partitions and free convolution, Math. Ann. 298 (1994), 611-628.
- Speicher R., On universal products, in Free Probability Theory (Waterloo, ON, 1995), Fields Inst. Commun., Vol. 12, Amer. Math. Soc., Providence, RI, 1997, 257-266.
- Speicher R., Woroudi R., Boolean convolution, in Free Probability Theory (Waterloo, ON, 1995), Fields Inst. Commun., Vol. 12, Amer. Math. Soc., Providence, RI, 1997, 267-279.
- Voiculescu D., Symmetries of some reduced free product $C^\ast$-algebras, in Operator Algebras and their Connections with Topology and Ergodic Theory (Buşteni, 1983), Lecture Notes in Math., Vol. 1132, Springer, Berlin, 1985, 556-588.
|
|