|
SIGMA 18 (2022), 059, 23 pages arXiv:2202.11611
https://doi.org/10.3842/SIGMA.2022.059
Contribution to the Special Issue on Enumerative and Gauge-Theoretic Invariants in honor of Lothar Göttsche on the occasion of his 60th birthday
Node Polynomials for Curves on Surfaces
Steven Kleiman a and Ragni Piene b
a) Room 2-172, Department of Mathematics, MIT, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
b) Department of Mathematics, University of Oslo, PO Box 1053, Blindern, NO-0316 Oslo, Norway
Received February 24, 2022, in final form July 28, 2022; Published online August 02, 2022
Abstract
We complete the proof of a theorem we announced and partly proved in [Math. Nachr. 271 (2004), 69-90, math.AG/0111299]. The theorem concerns a family of curves on a family of surfaces. It has two parts. The first was proved in that paper. It describes a natural cycle that enumerates the curves in the family with precisely $r$ ordinary nodes. The second part is proved here. It asserts that, for $r\le 8$, the class of this cycle is given by a computable universal polynomial in the pushdowns to the parameter space of products of the Chern classes of the family.
Key words: enumerative geometry; nodal curves; nodal polynomials; Bell polynomials; Enriques diagrams; Hilbert schemes.
pdf (525 kb)
tex (36 kb)
References
- Altman A.B., Iarrobino A., Kleiman S.L., Irreducibility of the compactified Jacobian, in Real and Complex Singularities (Proc. Ninth Nordic Summer School/NAVF Sympos. Math., Oslo, 1976), Sijthoff and Noordhoff, Alphen aan den Rijn, 1977, 1-12.
- Basu S., Mukherjee R., Counting curves in a linear system with up to eight singular points, arXiv:1909.00772.
- Bell E.T., Partition polynomials, Ann. of Math. 29 (1927/28), 38-46.
- Caporaso L., Enumerative geometry of plane curves, Notices Amer. Math. Soc. 67 (2020), 771-779.
- Das N., Mukherjee R., Counting planar curves in $\mathbb{P}^3$ with degenerate singularities, Bull. Sci. Math. 173 (2021), 103065, 64 pages, arXiv:2007.11933.
- Eisenbud D., Commutative algebra with a view toward algebraic geometry, Graduate Texts in Mathematics, Vol. 150, Springer-Verlag, New York, 1995.
- Esteves E., Gagné M., Kleiman S., Autoduality of the compactified Jacobian, J. London Math. Soc. 65 (2002), 591-610, arXiv:math.AG/9911071.
- Fulton W., Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), Vol. 2, Springer-Verlag, Berlin, 1984.
- Göttsche L., A conjectural generating function for numbers of curves on surfaces, Comm. Math. Phys. 196 (1998), 523-533, arXiv:alg-geom/9711012.
- Grothendieck A., Dieudonné J.A., Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. III, Inst. Hautes Études Sci. Publ. Math. 28 (1966), 5-255.
- Grothendieck A., Dieudonné J.A., Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. IV, Inst. Hautes Études Sci. Publ. Math. 32 (1967), 5-333.
- Hartshorne R., Deformation theory, Graduate Texts in Mathematics, Vol. 257, Springer, New York, 2010.
- Kazarian M.E., Multisingularities, cobordisms, and enumerative geometry, Russian Math. Surveys 58 (2003), 665-724.
- Kleiman S., Intersection theory and enumerative geometry: a decade in review, in Algebraic Geometry, Bowdoin, 1985 (Brunswick, Maine, 1985), Proc. Sympos. Pure Math., Vol. 46, Amer. Math. Soc., Providence, RI, 1987, 321-370.
- Kleiman S., Piene R., Enumerating singular curves on surfaces, in Algebraic Geometry: Hirzebruch 70 (Warsaw, 1998), Contemp. Math., Vol. 241, Amer. Math. Soc., Providence, RI, 1999, 209-238, arXiv:math.AG/9903192.
- Kleiman S., Piene R., Node polynomials for families: methods and applications, Math. Nachr. 271 (2004), 69-90, arXiv:math.AG/0111299.
- Kleiman S., Piene R., Enriques diagrams, arbitrarily near points, and Hilbert schemes (with Appendix B by Ilya Tyomkin), Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 22 (2011), 411-451, arXiv:0905.2169.
- Kool M., Shende V., Thomas R.P., A short proof of the Göttsche conjecture, Geom. Topol. 15 (2011), 397-406, arXiv:1010.3211.
- Laarakker T., The Kleiman-Piene conjecture and node polynomials for plane curves in $\mathbb P^3$, Selecta Math. (N.S.) 24 (2018), 4917-4959, arXiv:1710.02085.
- Li J., Tzeng Y.-J., Universal polynomials for singular curves on surfaces, Compos. Math. 150 (2014), 1169-1182, arXiv:1203.3180.
- Mukherjee R., Paul A., Singh R.K., Enumeration of rational curves in a moving family of $\mathbb{P}^2$, Bull. Sci. Math. 150 (2019), 1-11, arXiv:1808.04237.
- Mukherjee R., Singh R.K., Rational cuspidal curves in a moving family of $\mathbb{P}^2$, Complex Manifolds 8 (2021), 125-137, arXiv:2005.10664.
- Rennemo J.V., Universal polynomials for tautological integrals on Hilbert schemes, Geom. Topol. 21 (2017), 253-314, arXiv:1205.1851.
- The Stacks Project Authors, Stacks Project, 2022, https://stacks.math.columbia.edu/.
- Thorup A., Rational equivalence theory on arbitrary Noetherian schemes, in Enumerative Geometry (Sitges, 1987), Lecture Notes in Math., Vol. 1436, Springer, Berlin, 1990, 256-297.
- Tzeng Y.-J., A proof of the Göttsche-Yau-Zaslow formula, J. Differential Geom. 90 (2012), 439-472, arXiv:1009.5371.
- Vainsencher I., Enumeration of $n$-fold tangent hyperplanes to a surface, J. Algebraic Geom. 4 (1995), 503-526, arXiv:alg-geom/9312012.
|
|