|
SIGMA 18 (2022), 058, 16 pages arXiv:2201.00128
https://doi.org/10.3842/SIGMA.2022.058
Systolic Inequalities for Compact Quotients of Carnot Groups with Popp's Volume
Kenshiro Tashiro
Department of Mathematics, Tohoku University, Sendai Miyagi 980-8578, Japan
Received February 10, 2022, in final form July 28, 2022; Published online August 02, 2022
Abstract
In this paper, we give a systolic inequality for a quotient space of a Carnot group $\Gamma\backslash G$ with Popp's volume. Namely we show the existence of a positive constant $C$ such that the systole of $\Gamma\backslash G$ is less than ${\rm Cvol}(\Gamma\backslash G)^{\frac{1}{Q}}$, where $Q$ is the Hausdorff dimension. Moreover, the constant depends only on the dimension of the grading of the Lie algebra $\mathfrak{g}=\bigoplus V_i$. To prove this fact, the scalar product on $G$ introduced in the definition of Popp's volume plays a key role.
Key words: sub-Riemannian geometry; Carnot groups; Popp's volume; systole.
pdf (414 kb)
tex (18 kb)
References
- Agrachev A., Barilari D., Boscain U., On the Hausdorff volume in sub-Riemannian geometry, Calc. Var. Partial Differential Equations 43 (2012), 355-388, arXiv:1005.0540.
- Agrachev A., Barilari D., Boscain U., A comprehensive introduction to sub-Riemannian geometry, Cambridge Studies in Advanced Mathematics, Vol. 181, Cambridge University Press, Cambridge, 2020.
- Barilari D., Rizzi L., A formula for Popp's volume in sub-Riemannian geometry, Anal. Geom. Metr. Spaces 1 (2013), 42-57, arXiv:1211.2325.
- Bavard C., Inégalité isosystolique pour la bouteille de Klein, Math. Ann. 274 (1986), 439-441.
- Bellaïche A., The tangent space in sub-Riemannian geometry, in Sub-Riemannian Geometry, Progr. Math., Vol. 144, Birkhäuser, Basel, 1996, 1-78.
- Gromov M., Filling Riemannian manifolds, J. Differential Geom. 18 (1983), 1-147.
- Gromov M., Systoles and intersystolic inequalities, in Actes de la Table Ronde de Géométrie Différentielle (Luminy, 1992), Sémin. Congr., Vol. 1, Soc. Math. France, Paris, 1996, 291-362.
- Hassannezhad A., Kokarev G., Sub-Laplacian eigenvalue bounds on sub-Riemannian manifolds, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 16 (2016), 1049-1092, arXiv:1407.0358.
- Hebda J.J., Some lower bounds for the area of surfaces, Invent. Math. 65 (1982), 485-490.
- Mitchell J., On Carnot-Carathéodory metrics, J. Differential Geom. 21 (1985), 35-45.
- Montgomery R., A tour of subriemannian geometries, their geodesics and applications, Mathematical Surveys and Monographs, Vol. 91, Amer. Math. Soc., Providence, RI, 2002.
- Pu P.M., Some inequalities in certain nonorientable Riemannian manifolds, Pacific J. Math. 2 (1952), 55-71.
|
|