|
SIGMA 18 (2022), 057, 62 pages arXiv:2006.02053
https://doi.org/10.3842/SIGMA.2022.057
Equivariant Coarse (Co-)Homology Theories
Christopher Wulff
Mathematisches Institut, Georg-August-Universität Göttingen, Bunsenstr. 3-5, D-37073 Göttingen, Germany
Received October 03, 2021, in final form July 15, 2022; Published online July 26, 2022
Abstract
We present an Eilenberg-Steenrod-like axiomatic framework for equivariant coarse homology and cohomology theories. We also discuss a general construction of such coarse theories from topological ones and the associated transgression maps. A large part of this paper is devoted to showing how some well-established coarse (co-)homology theories, whose equivariant versions are either already known or will be introduced in this paper, fit into this setup. Furthermore, a new and more flexible notion of coarse homotopy is given which is more in the spirit of topological homotopies. Some, but not all, coarse (co-)homology theories are even invariant under these new homotopies. They also led us to a meaningful concept of topological actions of locally compact groups on coarse spaces.
Key words: equivariant coarse homology; equivariant coarse cohomology; equivariant coarse assembly; equivariant coarse coassembly; generalized coarse homotopies.
pdf (870 kb)
tex (78 kb)
References
- Bartels A.C., Squeezing and higher algebraic $K$-theory, $K$-Theory 28 (2003), 19-37, arXiv:math.AT/0308030.
- Baum P., Guentner E., Willett R., Expanders, exact crossed products, and the Baum-Connes conjecture, Ann. K-Theory 1 (2016), 155-208, arXiv:1311.2343.
- Blackadar B., $K$-theory for operator algebras, 2nd ed., Mathematical Sciences Research Institute Publications, Vol. 5, Cambridge University Press, Cambridge, 1998.
- Block J., Weinberger S., Aperiodic tilings, positive scalar curvature and amenability of spaces, J. Amer. Math. Soc. 5 (1992), 907-918.
- Bunke U., Engel A., Coarse cohomology theories, arXiv:1711.08599.
- Bunke U., Engel A., Homotopy theory with bornological coarse spaces, Lecture Notes in Math., Vol. 2269, Springer, Cham, 2020.
- Bunke U., Engel A., Kasprowski D., Winges C., Equivariant coarse homotopy theory and coarse algebraic $K$-homology, in $K$-Theory in Algebra, Analysis and Topology, Contemp. Math., Vol. 749, Amer. Math. Soc., Providence, RI, 2020, 13-104, arXiv:1710.04935.
- Echterhoff S., Bivariant KK-theory and the Baum-Connes conjecure, in $K$-Theory for Group $C^*$-Algebras and Semigroup $C^*$-Algebras, Oberwolfach Seminars, Vol. 47, Birkhäuser/Springer, Cham, 2017, 81-147, arXiv:1703.10912.
- Eilenberg S., Steenrod N., Foundations of algebraic topology, Princeton University Press, Princeton, N.J., 1952.
- Emerson H., Meyer R., Dualizing the coarse assembly map, J. Inst. Math. Jussieu 5 (2006), 161-186, arXiv:math.OA/0401227.
- Emerson H., Meyer R., A descent principle for the Dirac-dual-Dirac method, Topology 46 (2007), 185-209, arXiv:math.OA/0405388.
- Emerson H., Meyer R., Coarse and equivariant co-assembly maps, in $K$-Theory and Noncommutative Geometry, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2008, 71-89, arXiv:math.KT/0611610.
- Engel A., Wulff C., Coronas for properly combable spaces, J. Topol. Anal., to appear, arXiv:1711.06836.
- Engel A., Wulff C., Zeidler R., Slant products on the Higson-Roe exact sequence, Ann. Inst. Fourier (Grenoble) 71 (2021), 913-1021, arXiv:1909.03777.
- Guentner E., Higson N., Trout J., Equivariant $E$-theory for $C^*$-algebras, Mem. Amer. Math. Soc. 148 (2000), viii+86 pages.
- Guentner E., Willett R., Yu G., Dynamical complexity and controlled operator $K$-theory, arXiv:1609.02093.
- Hanke B., Pape D., Schick T., Codimension two index obstructions to positive scalar curvature, Ann. Inst. Fourier (Grenoble) 65 (2015), 2681-2710, arXiv:1402.4094.
- Hatcher A., Algebraic topology, Cambridge University Press, Cambridge, 2002.
- Higson N., Pedersen E.K., Roe J., $C^\ast$-algebras and controlled topology, $K$-Theory 11 (1997), 209-239.
- Higson N., Roe J., A homotopy invariance theorem in coarse cohomology and $K$-theory, Trans. Amer. Math. Soc. 345 (1994), 347-365.
- Higson N., Roe J., On the coarse Baum-Connes conjecture, in Novikov Conjectures, Index Theorems and Rigidity, Vol. 2 (Oberwolfach, 1993), London Math. Soc. Lecture Note Ser., Vol. 227, Cambridge University Press, Cambridge, 1995, 227-254.
- Higson N., Roe J., Analytic $K$-homology, Oxford Mathematical Monographs, Oxford University Press, Oxford, 2000.
- Higson N., Roe J., Yu G., A coarse Mayer-Vietoris principle, Math. Proc. Cambridge Philos. Soc. 114 (1993), 85-97.
- Massey W.S., Homology and cohomology theory. An approach based on Alexander-Spanier cochains, Monographs and Textbooks in Pure and Applied Mathematics, Vol. 46, Marcel Dekker, Inc., New York - Basel, 1978.
- Massey W.S., How to give an exposition of the Čech-Alexander-Spanier type homology theory, Amer. Math. Monthly 85 (1978), 75-83.
- Meyer R., Nest R., The Baum-Connes conjecture via localization of categories, Lett. Math. Phys. 69 (2004), 237-263, arXiv:math.KT/0312292.
- Mitchener P.D., Coarse homology theories, Algebr. Geom. Topol. 1 (2001), 271-297, arXiv:math.AT/0106183.
- Mitchener P.D., Norouzizadeh B., Schick T., Coarse homotopy groups, Math. Nachr. 293 (2020), 1515-1533, arXiv:1811.10096.
- Phillips N.C., Inverse limits of $C^*$-algebras, J. Operator Theory 19 (1988), 159-195.
- Phillips N.C., Representable $K$-theory for $\sigma$-$C^*$-algebras, $K$-Theory 3 (1989), 441-478.
- Phillips N.C., $K$-theory for Fréchet algebras, Internat. J. Math. 2 (1991), 77-129.
- Qiao Y., Roe J., On the localization algebra of Guoliang Yu, Forum Math. 22 (2010), 657-665.
- Roe J., Hyperbolic metric spaces and the exotic cohomology Novikov conjecture, $K$-Theory 4 (1991), 501-512.
- Roe J., Erratum: ''Hyperbolic metric spaces and the exotic cohomology Novikov conjecture'', $K$-Theory 5 (1991), 189.
- Roe J., Coarse cohomology and index theory on complete Riemannian manifolds, Mem. Amer. Math. Soc. 104 (1993), x+90 pages.
- Roe J., Index theory, coarse geometry, and topology of manifolds, CBMS Regional Conference Series in Mathematics, Vol. 90, Amer. Math. Soc., Providence, RI, 1996.
- Roe J., Lectures on coarse geometry, University Lecture Series, Vol. 31, Amer. Math. Soc., Providence, RI, 2003.
- Spanier E.H., Algebraic topology, McGraw-Hill Book Co., New York - Toronto, Ont. - London, 1966.
- Thomsen K., The universal property of equivariant $KK$-theory, J. Reine Angew. Math. 504 (1998), 55-71.
- Willett R., Some `homological' properties of the stable Higson corona, J. Noncommut. Geom. 7 (2013), 203-220.
- Willett R., Yu G., Higher index theory, Cambridge Studies in Advanced Mathematics, Vol. 189, Cambridge University Press, Cambridge, 2020.
- Wright N., Simultaneous metrizability of coarse spaces, Proc. Amer. Math. Soc. 139 (2011), 3271-3278.
- Wulff C., Coarse co-assembly as a ring homomorphism, J. Noncommut. Geom. 10 (2016), 471-514, arXiv:1412.1691.
- Wulff C., Coarse indices of twisted operators, J. Topol. Anal. 11 (2019), 823-873, arXiv:1606.01297.
- Wulff C., Secondary cup and cap products in coarse geometry, Res. Math. Sci. 8 (2021), 36, 64 pages, arXiv:2012.11296.
- Yu G., Cyclic cohomology and higher indices for noncompact complete manifolds, J. Funct. Anal. 133 (1995), 442-473.
- Yu G., Localization algebras and the coarse Baum-Connes conjecture, $K$-Theory 11 (1997), 307-318.
|
|