Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 18 (2022), 057, 62 pages      arXiv:2006.02053      https://doi.org/10.3842/SIGMA.2022.057

Equivariant Coarse (Co-)Homology Theories

Christopher Wulff
Mathematisches Institut, Georg-August-Universität Göttingen, Bunsenstr. 3-5, D-37073 Göttingen, Germany

Received October 03, 2021, in final form July 15, 2022; Published online July 26, 2022

Abstract
We present an Eilenberg-Steenrod-like axiomatic framework for equivariant coarse homology and cohomology theories. We also discuss a general construction of such coarse theories from topological ones and the associated transgression maps. A large part of this paper is devoted to showing how some well-established coarse (co-)homology theories, whose equivariant versions are either already known or will be introduced in this paper, fit into this setup. Furthermore, a new and more flexible notion of coarse homotopy is given which is more in the spirit of topological homotopies. Some, but not all, coarse (co-)homology theories are even invariant under these new homotopies. They also led us to a meaningful concept of topological actions of locally compact groups on coarse spaces.

Key words: equivariant coarse homology; equivariant coarse cohomology; equivariant coarse assembly; equivariant coarse coassembly; generalized coarse homotopies.

pdf (870 kb)   tex (78 kb)  

References

  1. Bartels A.C., Squeezing and higher algebraic $K$-theory, $K$-Theory 28 (2003), 19-37, arXiv:math.AT/0308030.
  2. Baum P., Guentner E., Willett R., Expanders, exact crossed products, and the Baum-Connes conjecture, Ann. K-Theory 1 (2016), 155-208, arXiv:1311.2343.
  3. Blackadar B., $K$-theory for operator algebras, 2nd ed., Mathematical Sciences Research Institute Publications, Vol. 5, Cambridge University Press, Cambridge, 1998.
  4. Block J., Weinberger S., Aperiodic tilings, positive scalar curvature and amenability of spaces, J. Amer. Math. Soc. 5 (1992), 907-918.
  5. Bunke U., Engel A., Coarse cohomology theories, arXiv:1711.08599.
  6. Bunke U., Engel A., Homotopy theory with bornological coarse spaces, Lecture Notes in Math., Vol. 2269, Springer, Cham, 2020.
  7. Bunke U., Engel A., Kasprowski D., Winges C., Equivariant coarse homotopy theory and coarse algebraic $K$-homology, in $K$-Theory in Algebra, Analysis and Topology, Contemp. Math., Vol. 749, Amer. Math. Soc., Providence, RI, 2020, 13-104, arXiv:1710.04935.
  8. Echterhoff S., Bivariant KK-theory and the Baum-Connes conjecure, in $K$-Theory for Group $C^*$-Algebras and Semigroup $C^*$-Algebras, Oberwolfach Seminars, Vol. 47, Birkhäuser/Springer, Cham, 2017, 81-147, arXiv:1703.10912.
  9. Eilenberg S., Steenrod N., Foundations of algebraic topology, Princeton University Press, Princeton, N.J., 1952.
  10. Emerson H., Meyer R., Dualizing the coarse assembly map, J. Inst. Math. Jussieu 5 (2006), 161-186, arXiv:math.OA/0401227.
  11. Emerson H., Meyer R., A descent principle for the Dirac-dual-Dirac method, Topology 46 (2007), 185-209, arXiv:math.OA/0405388.
  12. Emerson H., Meyer R., Coarse and equivariant co-assembly maps, in $K$-Theory and Noncommutative Geometry, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2008, 71-89, arXiv:math.KT/0611610.
  13. Engel A., Wulff C., Coronas for properly combable spaces, J. Topol. Anal., to appear, arXiv:1711.06836.
  14. Engel A., Wulff C., Zeidler R., Slant products on the Higson-Roe exact sequence, Ann. Inst. Fourier (Grenoble) 71 (2021), 913-1021, arXiv:1909.03777.
  15. Guentner E., Higson N., Trout J., Equivariant $E$-theory for $C^*$-algebras, Mem. Amer. Math. Soc. 148 (2000), viii+86 pages.
  16. Guentner E., Willett R., Yu G., Dynamical complexity and controlled operator $K$-theory, arXiv:1609.02093.
  17. Hanke B., Pape D., Schick T., Codimension two index obstructions to positive scalar curvature, Ann. Inst. Fourier (Grenoble) 65 (2015), 2681-2710, arXiv:1402.4094.
  18. Hatcher A., Algebraic topology, Cambridge University Press, Cambridge, 2002.
  19. Higson N., Pedersen E.K., Roe J., $C^\ast$-algebras and controlled topology, $K$-Theory 11 (1997), 209-239.
  20. Higson N., Roe J., A homotopy invariance theorem in coarse cohomology and $K$-theory, Trans. Amer. Math. Soc. 345 (1994), 347-365.
  21. Higson N., Roe J., On the coarse Baum-Connes conjecture, in Novikov Conjectures, Index Theorems and Rigidity, Vol. 2 (Oberwolfach, 1993), London Math. Soc. Lecture Note Ser., Vol. 227, Cambridge University Press, Cambridge, 1995, 227-254.
  22. Higson N., Roe J., Analytic $K$-homology, Oxford Mathematical Monographs, Oxford University Press, Oxford, 2000.
  23. Higson N., Roe J., Yu G., A coarse Mayer-Vietoris principle, Math. Proc. Cambridge Philos. Soc. 114 (1993), 85-97.
  24. Massey W.S., Homology and cohomology theory. An approach based on Alexander-Spanier cochains, Monographs and Textbooks in Pure and Applied Mathematics, Vol. 46, Marcel Dekker, Inc., New York - Basel, 1978.
  25. Massey W.S., How to give an exposition of the Čech-Alexander-Spanier type homology theory, Amer. Math. Monthly 85 (1978), 75-83.
  26. Meyer R., Nest R., The Baum-Connes conjecture via localization of categories, Lett. Math. Phys. 69 (2004), 237-263, arXiv:math.KT/0312292.
  27. Mitchener P.D., Coarse homology theories, Algebr. Geom. Topol. 1 (2001), 271-297, arXiv:math.AT/0106183.
  28. Mitchener P.D., Norouzizadeh B., Schick T., Coarse homotopy groups, Math. Nachr. 293 (2020), 1515-1533, arXiv:1811.10096.
  29. Phillips N.C., Inverse limits of $C^*$-algebras, J. Operator Theory 19 (1988), 159-195.
  30. Phillips N.C., Representable $K$-theory for $\sigma$-$C^*$-algebras, $K$-Theory 3 (1989), 441-478.
  31. Phillips N.C., $K$-theory for Fréchet algebras, Internat. J. Math. 2 (1991), 77-129.
  32. Qiao Y., Roe J., On the localization algebra of Guoliang Yu, Forum Math. 22 (2010), 657-665.
  33. Roe J., Hyperbolic metric spaces and the exotic cohomology Novikov conjecture, $K$-Theory 4 (1991), 501-512.
  34. Roe J., Erratum: ''Hyperbolic metric spaces and the exotic cohomology Novikov conjecture'', $K$-Theory 5 (1991), 189.
  35. Roe J., Coarse cohomology and index theory on complete Riemannian manifolds, Mem. Amer. Math. Soc. 104 (1993), x+90 pages.
  36. Roe J., Index theory, coarse geometry, and topology of manifolds, CBMS Regional Conference Series in Mathematics, Vol. 90, Amer. Math. Soc., Providence, RI, 1996.
  37. Roe J., Lectures on coarse geometry, University Lecture Series, Vol. 31, Amer. Math. Soc., Providence, RI, 2003.
  38. Spanier E.H., Algebraic topology, McGraw-Hill Book Co., New York - Toronto, Ont. - London, 1966.
  39. Thomsen K., The universal property of equivariant $KK$-theory, J. Reine Angew. Math. 504 (1998), 55-71.
  40. Willett R., Some `homological' properties of the stable Higson corona, J. Noncommut. Geom. 7 (2013), 203-220.
  41. Willett R., Yu G., Higher index theory, Cambridge Studies in Advanced Mathematics, Vol. 189, Cambridge University Press, Cambridge, 2020.
  42. Wright N., Simultaneous metrizability of coarse spaces, Proc. Amer. Math. Soc. 139 (2011), 3271-3278.
  43. Wulff C., Coarse co-assembly as a ring homomorphism, J. Noncommut. Geom. 10 (2016), 471-514, arXiv:1412.1691.
  44. Wulff C., Coarse indices of twisted operators, J. Topol. Anal. 11 (2019), 823-873, arXiv:1606.01297.
  45. Wulff C., Secondary cup and cap products in coarse geometry, Res. Math. Sci. 8 (2021), 36, 64 pages, arXiv:2012.11296.
  46. Yu G., Cyclic cohomology and higher indices for noncompact complete manifolds, J. Funct. Anal. 133 (1995), 442-473.
  47. Yu G., Localization algebras and the coarse Baum-Connes conjecture, $K$-Theory 11 (1997), 307-318.

Previous article  Next article  Contents of Volume 18 (2022)