|
SIGMA 18 (2022), 056, 21 pages arXiv:2201.03960
https://doi.org/10.3842/SIGMA.2022.056
$q$-Middle Convolution and $q$-Painlevé Equation
Shoko Sasaki a, Shun Takagi a and Kouichi Takemura b
a) Department of Mathematics, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
b) Department of Mathematics, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan
Received January 31, 2022, in final form July 08, 2022; Published online July 20, 2022
Abstract
A $q$-deformation of the middle convolution was introduced by Sakai and Yamaguchi. We apply it to a linear $q$-difference equation associated with the $q$-Painlevé VI equation. Then we obtain integral transformations. We investigate the $q$-middle convolution in terms of the affine Weyl group symmetry of the $q$-Painlevé VI equation. We deduce an integral transformation on the $q$-Heun equation.
Key words: $q$-Painlevé equation; $q$-Heun equation; middle convolution; integral transformation.
pdf (443 kb)
tex (24 kb)
References
- Aomoto K., On the 3 fundamental problems concerning $q$-basic hypergeometric functions ($q$-difference equations, asymptotic behaviours and connection problem), in Proceedinds of Fifth Oka Symposium (March 18-19, 2006, Nara), Oka Mathematical Institute, Japan, 2006, 16 pages (in Japanese), available at http://www.nara-wu.ac.jp/omi/oka_symposium/05/aomoto.pdf.
- Arai Y., Takemura K., On $q$-middle convolution and $q$-hypergeometric equations, in preparation.
- Dettweiler M., Reiter S., An algorithm of Katz and its application to the inverse Galois problem, J. Symbolic Comput. 30 (2000), 761-798.
- Dettweiler M., Reiter S., Middle convolution of Fuchsian systems and the construction of rigid differential systems, J. Algebra 318 (2007), 1-24.
- Filipuk G., On the middle convolution and birational symmetries of the sixth Painlevé equation, Kumamoto J. Math. 19 (2006), 15-23.
- Jimbo M., Sakai H., A $q$-analog of the sixth Painlevé equation, Lett. Math. Phys. 38 (1996), 145-154, arXiv:chao-dyn/9507010.
- Kajiwara K., Noumi M., Yamada Y., Geometric aspects of Painlevé equations, J. Phys. A: Math. Theor. 50 (2017), 073001, 164 pages, arXiv:1509.08186.
- Katz N.M., Rigid local systems, Annals of Mathematics Studies, Vol. 139, Princeton University Press, Princeton, NJ, 1996.
- Sakai H., Rational surfaces associated with affine root systems and geometry of the Painlevé equations, Comm. Math. Phys. 220 (2001), 165-229.
- Sakai H., Yamaguchi M., Spectral types of linear $q$-difference equations and $q$-analog of middle convolution, Int. Math. Res. Not. 2017 (2017), 1975-2013, arXiv:1410.3674.
- Sasaki S., Takagi S., Takemura K., $q$-Heun equation and initial-value space of $q$-Painlevé equation, in Proceedings of the Conference FASnet21, to appear, arXiv:2110.13860.
- Takagi S., Application of $q$-middle convolution to $q$-sixth Painlevé equation, Master Thesis, Chuo University, 2021 (in Japanese).
- Takemura K., Integral representation of solutions to Fuchsian system and Heun's equation, J. Math. Anal. Appl. 342 (2008), 52-69, arXiv:0705.3358.
- Takemura K., Middle convolution and Heun's equation, SIGMA 5 (2009), 040, 22 pages, arXiv:0810.3112.
- Takemura K., Degenerations of Ruijsenaars-van Diejen operator and $q$-Painlevé equations, J. Integrable Syst. 2 (2017), xyx008, 27 pages, arXiv:1608.07265.
- Takemura K., On $q$-deformations of the Heun equation, SIGMA 14 (2018), 061, 16 pages, arXiv:1712.09564.
|
|