Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 18 (2022), 048, 14 pages      arXiv:2011.00707      https://doi.org/10.3842/SIGMA.2022.048

On the Monodromy Invariant Hermitian Form for $A$-Hypergeometric Systems

Carlo Verschoor
Department of Mathematics, Utrecht University, Utrecht, Budapestlaan 6, 3580 TA, The Netherlands

Received August 24, 2021, in final form June 22, 2022; Published online June 30, 2022

Abstract
We will give an explicit construction of the invariant Hermitian form for the monodromy of an $A$-hypergeometric system given that there is a Mellin-Barnes basis of solutions.

Key words: monodromy; $A$-hypergeometric functions; invariant Hermitian form.

pdf (427 kb)   tex (22 kb)  

References

  1. Adolphson A., Hypergeometric functions and rings generated by monomials, Duke Math. J. 73 (1994), 269-290, arXiv:math.AG/9910009.
  2. Appell P., Mémoire sur les équations différentielles linéaires, Ann. Sci. 'Ecole Norm. Sup. (2) 10 (1881), 391-424.
  3. Appell P., Sur les fonctions hypergéométriques de deux variables, J. Math. Pures Appl. 8 (1882), 173-216.
  4. Beukers F., Algebraic $A$-hypergeometric functions, Invent. Math. 180 (2010), 589-610, arXiv:0812.1134.
  5. Beukers F., Notes on $A$-hypergeometric functions, in Arithmetic and Galois theories of differential equations, Sémin. Congr., Vol. 23, Soc. Math. France, Paris, 2011, 25-61.
  6. Beukers F., Monodromy of $A$-hypergeometric functions, J. Reine Angew. Math. 718 (2016), 183-206, arXiv:1101.0493.
  7. Beukers F., Heckman G., Monodromy for the hypergeometric function $_nF_{n-1}$, Invent. Math. 95 (1989), 325-354.
  8. Cattani E., Dickenstein A., Sturmfels B., Binomial residues, Ann. Inst. Fourier (Grenoble) 52 (2002), 687-708, arXiv:math.AG/0003178.
  9. De Loera J.A., Rambau J., Santos F., Triangulations. Structures for algorithms and applications, Algorithms and Computation in Mathematics, Vol. 25, Springer-Verlag, Berlin, 2010.
  10. Gelfand I.M., Graev M.I., Zelevinsky A.V., Holonomic systems of equations and series of hypergeometric type, Dokl. Akad. Nauk SSSR 295 (1987), 14-19.
  11. Gelfand I.M., Kapranov M.M., Zelevinsky A.V., Generalized Euler integrals and $A$-hypergeometric functions, Adv. Math. 84 (1990), 255-271.
  12. Gelfand I.M., Zelevinsky A.V., Kapranov M.M., Equations of hypergeometric type and Newton polyhedra, Dokl. Akad. Nauk SSSR 300 (1988), 529-534.
  13. Gelfand I.M., Zelevinsky A.V., Kapranov M.M., Hypergeometric functions and toral manifolds, Funct. Anal. Appl. 23 (1989), 94-106.
  14. Goto Y., Matsubara-Heo S.-J., On the signature of monodromy invariant Hermitian form, unpublished, 2020.
  15. Goto Y., Matsubara-Heo S.-J., Homology and cohomology intersection numbers of GKZ systems, Indag. Math. (N.S.) 33 (2022), 546-580, arXiv:2006.07848.
  16. Griffiths P., Harris J., Principles of algebraic geometry, Pure and Applied Mathematics, Wiley-Interscience, New York, 1978.
  17. Horn J., Ueber die Convergenz der hypergeometrischen Reihen zweier und dreier Veränderlichen, Math. Ann. 34 (1889), 544-600.
  18. Horn J., Hypergeometrische Funktionen zweier Veränderlichen, Math. Ann. 105 (1931), 381-407.
  19. Kita M., Yoshida M., Intersection theory for twisted cycles, Math. Nachr. 166 (1994), 287-304.
  20. Lauricella G., Sulle funzioni ipergeometriche a piu variabili, Rend. Circ. Mat. Palermo 7 (1893), 111-158.

Previous article  Next article  Contents of Volume 18 (2022)