Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 18 (2022), 040, 18 pages      arXiv:2110.01353      https://doi.org/10.3842/SIGMA.2022.040

Dirac Operators for the Dunkl Angular Momentum Algebra

Kieran Calvert a and Marcelo De Martino b
a) Department of Mathematics, University of Manchester, UK
b) Department of Electronics and Information Systems, University of Ghent, Belgium

Received November 10, 2021, in final form May 24, 2022; Published online June 01, 2022

Abstract
We define a family of Dirac operators for the Dunkl angular momentum algebra depending on certain central elements of the group algebra of the Pin cover of the Weyl group inherent to the rational Cherednik algebra. We prove an analogue of Vogan's conjecture for this family of operators and use this to show that the Dirac cohomology, when non-zero, determines the central character of representations of the angular momentum algebra. Furthermore, interpreting this algebra in the framework of (deformed) Howe dualities, we show that the natural Dirac element we define yields, up to scalars, a square root of the angular part of the Calogero-Moser Hamiltonian.

Key words: Dirac operators; Calogero-Moser angular momentum; rational Cherednik algebras.

pdf (438 kb)   tex (27 kb)  

References

  1. Atiyah M., Schmid W., A geometric construction of the discrete series for semisimple Lie groups, Invent. Math. 42 (1977), 1-62.
  2. Barbasch D., Ciubotaru D., Trapa P.E., Dirac cohomology for graded affine Hecke algebras, Acta Math. 209 (2012), 197-227, arXiv:1006.3822.
  3. Calvert K., Dirac cohomology, the projective supermodules of the symmetric group and the Vogan morphism, Q. J. Math. 70 (2019), 535-563, arXiv:1705.06478.
  4. Calvert K., Dirac cohomology of the Dunkl-Opdam subalgebra via inherited Drinfeld properties, Comm. Algebra 48 (2020), 1476-1498, arXiv:1806.10862.
  5. Ciubotaru D., Dirac cohomology for symplectic reflection algebras, Selecta Math. (N.S.) 22 (2016), 111-144, arXiv:1502.05671.
  6. Ciubotaru D., De Martino M., Dirac induction for rational Cherednik algebras, Int. Math. Res. Not. 2020 (2020), 5155-5214, arXiv:1710.06847.
  7. Ciubotaru D., De Martino M., The Dunkl-Cherednik deformation of a Howe duality, J. Algebra 560 (2020), 914-959, arXiv:1812.00502.
  8. Ciubotaru D., Opdam E.M., Trapa P.E., Algebraic and analytic Dirac induction for graded affine Hecke algebras, J. Inst. Math. Jussieu 13 (2014), 447-486, arXiv:1201.2130.
  9. De Bie H., Oste R., Van der Jeugt J., On the algebra of symmetries of Laplace and Dirac operators, Lett. Math. Phys. 108 (2018), 1905-1953, arXiv:1701.05760.
  10. De Bie H., Oste R., Van der Jeugt J., The total angular momentum algebra related to the ${\rm S}_3$ Dunkl Dirac equation, Ann. Physics 389 (2018), 192-218, arXiv:1705.08751.
  11. Etingof P., Ginzburg V., Symplectic reflection algebras, Calogero-Moser space, and deformed Harish-Chandra homomorphism, Invent. Math. 147 (2002), 243-348, arXiv:math.AG/0011114.
  12. Etingof P., Stoica E., Unitary representations of rational Cherednik algebras (with an appendix by Stephen Griffeth), Represent. Theory 13 (2009), 349-370, arXiv:0901.4595.
  13. Feigin M., Hakobyan T., On Dunkl angular momenta algebra, J. High Energy Phys. 2015 (2015), no. 11, 107, 23 pages, arXiv:1409.2480.
  14. Feigin M., Hakobyan T., Algebra of Dunkl Laplace-Runge-Lenz vector, arXiv:1907.06706.
  15. Heckman G.J., A remark on the Dunkl differential-difference operators, in Harmonic Analysis on Reductive Groups (Brunswick, ME, 1989), Progr. Math., Vol. 101, Birkhäuser Boston, Boston, MA, 1991, 181-191.
  16. Howe R., Remarks on classical invariant theory, Trans. Amer. Math. Soc. 313 (1989), 539-570.
  17. Huang J.-S., Pandvzić P., Dirac cohomology, unitary representations and a proof of a conjecture of Vogan, J. Amer. Math. Soc. 15 (2002), 185-202.
  18. Kleshchev A., Linear and projective representations of symmetric groups, Cambridge Tracts in Mathematics, Vol. 163, Cambridge University Press, Cambridge, 2005.
  19. Kostant B., Dirac cohomology for the cubic Dirac operator, in Studies in Memory of Issai Schur (Chevaleret/Rehovot, 2000), Progr. Math., Vol. 210, Birkhäuser Boston, Boston, MA, 2003, 69-93, arXiv:math.RT/0208048.
  20. Morris A.O., Projective representations of reflection groups, Proc. London Math. Soc. 32 (1976), 403-420.
  21. Parthasarathy R., Dirac operator and the discrete series, Ann. of Math. 96 (1972), 1-30.
  22. Vogan Jr. D.A., Lectures on the Dirac operator I-III, Massachusetts Institute of Technology, 1997, unpublished notes.
  23. Weyl H., The classical groups. Their invariants and representations, Princeton University Press, Princeton, N.J., 1939.

Previous article  Next article  Contents of Volume 18 (2022)