|
SIGMA 18 (2022), 039, 20 pages arXiv:2112.01735
https://doi.org/10.3842/SIGMA.2022.039
Doubly Exotic $N$th-Order Superintegrable Classical Systems Separating in Cartesian Coordinates
İsmet Yurduşen a, Adrián Mauricio Escobar-Ruiz b and Irlanda Palma y Meza Montoya b
a) Department of Mathematics, Hacettepe University, 06800 Beytepe, Ankara, Turkey
b) Departamento de Física, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, México, CDMX, 09340 México
Received December 18, 2021, in final form May 16, 2022; Published online May 27, 2022
Abstract
Superintegrable classical Hamiltonian systems in two-dimensional Euclidean space $E_2$ are explored. The study is restricted to Hamiltonians allowing separation of variables $V(x,y)=V_1(x)+V_2(y)$ in Cartesian coordinates. In particular, the Hamiltonian $\mathcal H$ admits a polynomial integral of order $N>2$. Only doubly exotic potentials are considered. These are potentials where none of their separated parts obey any linear ordinary differential equation. An improved procedure to calculate these higher-order superintegrable systems is described in detail. The two basic building blocks of the formalism are non-linear compatibility conditions and the algebra of the integrals of motion. The case $N=5$, where doubly exotic confining potentials appear for the first time, is completely solved to illustrate the present approach. The general case $N>2$ and a formulation of inverse problem in superintegrability are briefly discussed as well.
Key words: integrability in classical mechanics; higher-order superintegrability; separation of variables; exotic potentials.
pdf (4210 kb)
tex (3502 kb)
References
- Abouamal I., Winternitz P., Fifth-order superintegrable quantum systems separating in Cartesian coordinates: doubly exotic potentials, J. Math. Phys. 59 (2018), 022104, 27 pages, arXiv:1708.03379.
- Baldwin D., Hereman W., PainleveTestV4-2018.m: A Mathematica package for the Painlevé test of systems of nonlinear ordinary and partial differential equations, 2018, https://inside.mines.edu/ whereman/software/painleve/mathematica/.
- Bertrand J.L.F., Théorème relatif au mouvement d'un point attiré vers un centre fixe, C. R. Acad. Sci. Paris 77 (1873), 849-853.
- Bertrand S., Kubu O., Šnobl L., On superintegrability of 3D axially-symmetric non-subgroup-type systems with magnetic fields, J. Phys. A: Math. Theor. 54 (2021), 015201, 27 pages, arXiv:2008.01987.
- Bérubé J., Winternitz P., Integrable and superintegrable quantum systems in a magnetic field, J. Math. Phys. 45 (2004), 1959-1973, arXiv:math-ph/0311051.
- Chanu C.M., Degiovanni L., Rastelli G., The Tremblay-Turbiner-Winternitz system as extended Hamiltonian, J. Math. Phys. 55 (2014), 122701, 8 pages, arXiv:1404.4825.
- Chanu C.M., Rastelli G., Extended Hamiltonians and shift, ladder functions and operators, Ann. Physics 386 (2017), 254-274, arXiv:1705.09519.
- Daskaloyannis C., Generalized deformed oscillator and nonlinear algebras, J. Phys. A: Math. Gen. 24 (1991), L789-L794.
- Désilets J.F., Winternitz P., Yurduşen İ, Superintegrable systems with spin and second-order integrals of motion, J. Phys. A: Math. Theor. 45 (2012), 475201, 26 pages, arXiv:1208.2886.
- Dorizzi B., Grammaticos B., Ramani A., Winternitz P., Integrable Hamiltonian systems with velocity-dependent potentials, J. Math. Phys. 26 (1985), 3070-3079.
- Drach J., Sur l'integration logique des équations de la dynamique à deux variables: Forces constructives. Intégrales cubiques. Mouvements dans le plan, C. R. Acad. Sci. Paris 200 (1935), 22-26.
- Drach J., Sur l'integration logique et sur la tranformation des équations de la dynamique à deux variables: Forces conservatives. Intégrales cubiques. Mouvements dans le plan, C. R. Acad. Sci. Paris 200 (1935), 599-602.
- Escobar-Ruiz A.M., Linares R., Winternitz P., New infinite families of $N$th-order superintegrable systems separating in Cartesian coordinates, J. Phys. A: Math. Theor. 53 (2020), 445203, 26 pages, arXiv:2004.12173.
- Escobar-Ruiz A.M., López Vieyra J.C., Winternitz P., Fourth order superintegrable systems separating in polar coordinates. I. Exotic potentials, J. Phys. A: Math. Theor. 50 (2017), 495206, 35 pages, arXiv:1706.08655.
- Escobar-Ruiz A.M., López Vieyra J.C., Winternitz P., Yurduşen İ, Fourth-order superintegrable systems separating in polar coordinates. II. Standard potentials, J. Phys. A: Math. Theor. 51 (2018), 455202, 24 pages, arXiv:1804.05751.
- Escobar-Ruiz A.M., Winternitz P., Yurduşen İ, General $N$th-order superintegrable systems separating in polar coordinates, J. Phys. A: Math. Theor. 51 (2018), 40LT01, 12 pages, arXiv:1806.06849.
- Evans N.W., Super-integrability of the Winternitz system, Phys. Lett. A 147 (1990), 483-486.
- Evans N.W., Superintegrability in classical mechanics, Phys. Rev. A 41 (1990), 5666-5676.
- Fradkin D.M., Three-dimensional isotropic harmonic oscillator and ${\rm SU}_{3}$, Amer. J. Phys. 33 (1965), 207-211.
- Friš J., Mandrosov V., Smorodinsky Y.A., Uhlíř M., Winternitz P., On higher symmetries in quantum mechanics, Phys. Lett. 16 (1965), 354-356.
- Goldstein H., Classical mechanics, 2nd ed., Addison-Wesley Series in Physics, Addison-Wesley Publishing Co., Reading, Mass., 1980.
- Gravel S., Hamiltonians separable in Cartesian coordinates and third-order integrals of motion, J. Math. Phys. 45 (2004), 1003-1019, arXiv:math-ph/0302028.
- Gravel S., Winternitz P., Superintegrability with third-order integrals in quantum and classical mechanics, J. Math. Phys. 43 (2002), 5902-5912, arXiv:math-ph/0206046.
- Grigoriev Y.A., Tsiganov A.V., On superintegrable systems separable in Cartesian coordinates, Phys. Lett. A 382 (2018), 2092-2096, arXiv:1712.07321.
- Grosche C., Pogosyan G.S., Sissakian A.N., Path integral discussion for Smorodinsky-Winternitz potentials. II. The two- and three-dimensional sphere, Fortschr. Phys. 43 (1995), 523-563, arXiv:hep-th/9402121.
- Grosche C., Pogosyan G.S., Sissakian A.N., Path integral approach to superintegrable potentials. Two-dimensional hyperboloid, Phys. Part. Nuclei 27 (1996), 244-278.
- Grosche C., Pogosyan G.S., Sissakian A.N., Path integral discussion for superintegrable potentials. IV. Three-dimensional pseudosphere, Phys. Part. Nuclei 28 (1997), 486-519.
- Güngör F., Kuru S., Negro J., Nieto L.M., Heisenberg-type higher order symmetries of superintegrable systems separable in Cartesian coordinates, Nonlinearity 30 (2017), 1788-1808, arXiv:1411.6216.
- Hietarinta J., Direct methods for the search of the second invariant, Phys. Rep. 147 (1987), 87-154.
- Jauch J.M., Hill E.L., On the problem of degeneracy in quantum mechanics, Phys. Rev. 57 (1940), 641-645.
- Kalnins E.G., Separation of variables for Riemannian spaces of constant curvature, Pitman Monographs and Surveys in Pure and Applied Mathematics, Vol. 28, Longman Scientific & Technical, Harlow, John Wiley & Sons, Inc., New York, 1986.
- Kalnins E.G., Kress J.M., Miller Jr. W., Second-order superintegrable systems in conformally flat spaces. V. Two- and three-dimensional quantum systems, J. Math. Phys. 47 (2006), 093501, 25 pages.
- Kalnins E.G., Kress J.M., Miller Jr. W., Nondegenerate 2D complex Euclidean superintegrable systems and algebraic varieties, J. Phys. A: Math. Theor. 40 (2007), 3399-3411, arXiv:0708.3044.
- Kalnins E.G., Kress J.M., Miller Jr. W., Separation of variables and superintegrability. The symmetry of solvable systems, IOP Expanding Physics, IOP Publishing, Bristol, 2018.
- Kalnins E.G., Kress J.M., Miller Jr. W., Post S., Structure theory for second order 2D superintegrable systems with 1-parameter potentials, SIGMA 5 (2009), 008, 24 pages, arXiv:0901.3081.
- Kalnins E.G., Kress J.M., Miller Jr. W., Winternitz P., Superintegrable systems in Darboux spaces, J. Math. Phys. 44 (2003), 5811-5848, arXiv:math-ph/0307039.
- Kalnins E.G., Kress J.M., Winternitz P., Superintegrability in a two-dimensional space of nonconstant curvature, J. Math. Phys. 43 (2002), 970-983, arXiv:math-ph/0108015.
- Kalnins E.G., Miller Jr. W., Pogosyan G.S., Nondegenerate superintegrable systems in $n$-dimensional spaces of constant curvature, Phys. Atomic Nuclei 70 (2007), 545-553, arXiv:0912.2278.
- Kalnins E.G., Williams G.C., Miller Jr. W., Pogosyan G.S., On superintegrable symmetry-breaking potentials in $N$-dimensional Euclidean space, J. Phys. A: Math. Gen. 35 (2002), 4755-4773.
- Laplace P.S., Traité de mécanique céleste, Duprat, Paris, 1799.
- Lenz W., Über den Bewegungsverlauf und die Quantenzustände der gestörten Keplerbewegung, Z. Phys. 24 (1924), 197-207.
- Makarov A.A., Smorodinsky J.A., Valiev K., Winternitz P., A systematic search for nonrelativistic systems with dynamical symmetries, Nuovo Cimento A 52 (1967), 1061-1084.
- Marchesiello A., Šnobl L., Winternitz P., Three-dimensional superintegrable systems in a static electromagnetic field, J. Phys. A: Math. Theor. 48 (2015), 395206, 24 pages, arXiv:1507.04632.
- Marchesiello A., Šnobl L., Winternitz P., Spherical type integrable classical systems in a magnetic field, J. Phys. A: Math. Theor. 51 (2018), 135205, 24 pages.
- Marquette I., Superintegrability with third order integrals of motion, cubic algebras, and supersymmetric quantum mechanics. II. Painlevé transcendent potentials, J. Math. Phys. 50 (2009), 095202, 18, arXiv:0811.1568.
- Marquette I., Classical ladder operators, polynomial Poisson algebras, and classification of superintegrable systems, J. Math. Phys. 53 (2012), 012901, 12 pages, arXiv:1109.4471.
- Marquette I., Sajedi M., Winternitz P., Fourth order superintegrable systems separating in Cartesian coordinates I. Exotic quantum potentials, J. Phys. A: Math. Theor. 50 (2017), 315201, 29 pages, arXiv:1703.09751.
- Marquette I., Winternitz P., Polynomial Poisson algebras for classical superintegrable systems with a third-order integral of motion, J. Math. Phys. 48 (2007), 012902, 16 pages, arXiv:math-ph/0608021.
- Miller Jr. W., Symmetry and separation of variables, Encyclopedia of Mathematics and its Applications, Vol. 4, Addison-Wesley Publishing Co., Reading, Mass. - London - Amsterdam, 1977.
- Miller Jr. W., Second order superintegrable systems in three dimensions, SIGMA 1 (2005), 015, 17 pages, arXiv:nlin.SI/0511035.
- Miller Jr. W., Post S., Winternitz P., Classical and quantum superintegrability with applications, J. Phys. A: Math. Theor. 46 (2013), 423001, 97 pages, arXiv:1309.2694.
- Nikitin A.G., Higher-order symmetry operators for Schrödinger equation, in Superintegrability in Classical and Quantum Systems, CRM Proc. Lecture Notes, Vol. 37, Amer. Math. Soc., Providence, RI, 2004, 137-144, arXiv:1603.01715.
- Nikitin A.G., Matrix superpotentials and superintegrable systems for arbitrary spin, J. Phys. A: Math. Theor. 45 (2012), 225205, 13 pages, arXiv:1201.4929.
- Nikitin A.G., New exactly solvable systems with Fock symmetry, J. Phys. A: Math. Theor. 45 (2012), 485204, 9 pages, arXiv:1205.3094.
- Popper I., Post S., Winternitz P., Third-order superintegrable systems separable in parabolic coordinates, J. Math. Phys. 53 (2012), 062105, 20 pages, arXiv:1204.0700.
- Post S., Winternitz P., An infinite family of superintegrable deformations of the Coulomb potential, J. Phys. A: Math. Theor. 43 (2010), 222001, 11 pages, arXiv:1003.5230.
- Post S., Winternitz P., General $N$th order integrals of motion in the Euclidean plane, J. Phys. A: Math. Theor. 48 (2015), 405201, 24 pages, arXiv:1501.00471.
- Rañada M.F., Superintegrable $n=2$ systems, quadratic constants of motion, and potentials of Drach, J. Math. Phys. 38 (1997), 4165-4178.
- Rodriguez M.A., Winternitz P., Quantum superintegrability and exact solvability in $n$ dimensions, J. Math. Phys. 43 (2002), 1309-1322, arXiv:math-ph/0110018.
- Runge C., Vektoranalysis I, Hirzel, Leipzig, 1919.
- Thompson G., Polynomial constants of motion in flat space, J. Math. Phys. 25 (1984), 3474-3478.
- Tremblay F., Turbiner A.V., Winternitz P., An infinite family of solvable and integrable quantum systems on a plane, J. Phys. A: Math. Theor. 42 (2009), 242001, 10 pages, arXiv:0904.0738.
- Tremblay F., Turbiner A.V., Winternitz P., Periodic orbits for an infinite family of classical superintegrable systems, J. Phys. A: Math. Theor. 43 (2010), 015202, 14 pages, arXiv:0910.0299.
- Tremblay F., Winternitz P., Third-order superintegrable systems separating in polar coordinates, J. Phys. A: Math. Theor. 43 (2010), 175206, 17 pages, arXiv:1002.1989.
- Tsiganov A.V., The Drach superintegrable systems, J. Phys. A: Math. Gen. 33 (2000), 7407-7422, arXiv:nlin.SI/0001053.
- Tsiganov A.V., Addition theorems and the Drach superintegrable systems, J. Phys. A: Math. Theor. 41 (2008), 335204, 16 pages, arXiv:0805.3443.
- Tsiganov A.V., On maximally superintegrable systems, Regul. Chaotic Dyn. 13 (2008), 178-190, arXiv:0711.2225.
- Winternitz P., Yurduşen İ, Integrable and superintegrable systems with spin, J. Math. Phys. 47 (2006), 103509, 10 pages, arXiv:math-ph/0604050.
- Winternitz P., Yurduşen İ, Integrable and superintegrable systems with spin in three-dimensional Euclidean space, J. Phys. A: Math. Theor. 42 (2009), 385203, 20 pages, arXiv:0906.1021.
- Yurduşen İ, Tuncer O.O., Winternitz P., Superintegrable systems with spin and second-order tensor and pseudo-tensor integrals of motion, J. Phys. A: Math. Theor. 54 (2021), 305201, 32 pages, arXiv:2104.07436.
|
|